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Preface to the Doyer Edition

THs REPUBLIcATIoN oF THrs BooK gave me an opportunity to
conect and bring up to date Symbols, Sfgnals and Noise,l which I
wrote almost twenty years ago. Because the book deals largely
with Shannon's work, which remains eternally valid, I found itrat
there were not many changes to be made. In a few places I altered
tense in referring to men who have died. I did not try to replace
cycles per second (cps) by the more modern term, hertz 1nd nor
did I change everywhere communication theory (Shannon's term)
to information theory, the term I would use today.

Some things I did alter, rewriting a few para$aphs and about
twenty pages without changing the pagination.

In Chapter X, Information Theory and Physics, I replaced a
background radiation temperature of space of "2o to 4oK" (Heaven
knows where I got that) by the correct value of 3.5oK, as deter-
mined by Penzias and Wilson. To the fact that in the absence of
noise we can in principle transmit an unlimited number of bits per
quantuffi, f added new material on quantum effects in communica-
tion.2 I also replaced an obsolete thought-up example of space
communication by a brief analysis of the microwave transmiJsion
of picture signals from the Voyager near Jupiter, and by an exposi-
tion of new possibilities.

r Harper Modern Science Series, Harper and Brothers, New York, 196l.
2 See Introduction to Communication Science snd Systems, John R. Pierce

and Edward C. Posner, Plenum Publishing Coqporation, New York, 1980.
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In Chapter VII, Efficient Encoding, I rewrote a few pages con-
cerning efficient source encodirg of TV and changed a few sen-
tences about pulse code modulation and about vocoders. I also
changed the material on error correcting codes.

In Chapter XI, Cybernetics, f rewrote four pages on computers
and programming, which have advanced incredibly during the last
twenty years.

Finally, I made a few changes in the last short Chapter XIV,
Back to Communication Theory.

Beyond these revisions, I call to the reader's attention a series
of papers on the history of information theory that were published
in 1973 in the IEEE Transactions on Information TheoryT and
two up-to-date books as telling in more detail the present state
of information theory and the mathematical aspects of com-
munication.2'a'5

Several chapters in the original book deal with areas relevant
only through application or attempted application of information
theory.

I think that Chapter XII, Information Theory and Psychology,
gives a fair idea of the sort of applications attempted in that area.
Today psychologists are less concerned with information theory
than with cognitive science, a heady association of truly startling
progress in the understanding of the nervous system, with ideas
drawn from anthropology, linguistics and a belief that some power-
ful and simple mathematical order must underly human function.
Cognitive science of today reminds me of cybernetics of twenty
years ago.

As to Information Theory and Art, today the computer has re-
placed information theory in casual discussions. But, the ideas
explored in Chapter XIII have been pursued further. I will mention
some attractive poems produced by Marie Borroff6'7, and, es-

3 IEEE Transactions on Information Theory, Vol.
t48, 257-262, 381-389 (t973) .

a The Theory of Information and Coding, Robert
Wesley, Reading, MA, 1977.

IT-19, pp. 3-8, 145-

J. McEliece, Addison-

vl l l

5 Principles of Digital Communication and Coding, Andrew
Jim K. Omura, McGraw Hill, New York, 1979.

6 "Computer as Poet," Marie Borroff, Yale Alumni Magazine, Ian. 1971.
r Computer Poems, gathered by Richard Bailey, Potagannissing Press,

1973 .

J. Viterbi and
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pecially a grammar of Swedish folksongs by means of which Johan
Sundberg produced a number of authentic sounding tunes.8

This brings us back to language and Chapter VI, Language and
Meaning. The problems raised in that chapter have not been re-
solved during the last twenty years. We do not have a complete
grammar of any natural language. Indeed, formal grammar has
proved most powerful in the area of computer languages. It is my
reading that attention in linguistics has shifted somewhat to the
phonological aspects of spoken language, to understanding what
its building blocks are and how they interacf-pstters of great
interest in the computer generation of speech from text. Chomsky
and Halle have written a large book on stresS,e and Liberman and
Prince a smaller and very powerful account.l0

So much for changes from the original Signals, Symbols and
Noise. Beyond this, I can only reiterate some of the things I said
in the preface to that book.

When James R. Newman suggested to me that I write a book
about communication I was delighted. All my technical work has
been inspired by one aspect or another of communication. Of
course I would like to tell others what seems to me to be interest-
ing and challenging in this important field.

It would have been difficult to do this and to give any sense of
unity to the account before 1948 when Claude E. Shannon pub-
lished "A Mathematical Theory of Communication."ll Shannon's
communication theory, which is also called information theory,
has brought into a reasonable relation the many problems that have
been troubling communication engineers for years. It has created a
broad but clearly defined and limited field where before there were
many special problems and ideas whose interrelations were not well

8 "Generative Theories in Language and Musical Descriptions," Johan
Sundberg and Bjorn Lindblom, Cognition, Vol. 4, pp. 99-122, 1976.

s The Sound Pattern of English, N. Chomsky and M. Halle, Harper and
Row, 1968.

10 "On Stress and Linguistic Rhythm," Mark Liberman and Alan Prince,
Linguistic Inqulry, Vol. 8, No. 2, pp.249-336, Spring, 1,977 .

rr The papers, originally published in the Bell System Technical Journal,
are reprinted in The Mathematical Theory of Communication, Shannon and
Weaver, LJniversity of Illinois Press, first printing 1949. Shannon presented
a somewhat different approach (used in Chapter IX of this book) in "Com-
munication in the Presence of Noise," Proceedings of the Institute of Radio
Engineers, Vol. 37,pp. lGzI, 1949.
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understood. No one can accuse me of bein g a Shannon worshipel
and get away unrewarded.

Thus, I felt that my account of cornmunication must be an
account of information theory as Shannon formulated it. The
account would have to be broader than Shannon's in that it would
discuss the relation, or lack of relation, of information theory to
the many fields to which people have applied it. The account would
have to be broader than Shannon's in that it would have to be less
mathematical.

Here came the rub. My account could be /ess mathematical than
Shannon's, but it could not be nonmathematical. Information
theory is a mathematical theory. It starts from certain premises
that define the aspects of communication with which it will deal,
and it proceeds from these premises to various logical conclusions.
The glory of information theory lies in certain mathematical
theorems which are both surprisirg and important. To talk about
information theory without communicatirg its real mathematical
content would be like endlessly telling a man about a wonderful
composer yet never letting him hear an example of the composer's
music.

How was I to proceed? It seemed to me that I had to make the
book self-contained, so that any mathematics in it could be under-
stood without referring to other books or without calling for the
particular content of early mathematical training, such as high
school algebra. Did this mean that I had to avoid mathematical
notation? Not necessarily, but any mathematical notation would
have to be explained in the most elementary terms. I have done
this both in the text and in an appendix; by going back and forth
between the two, the mathematically untutored reader should be
able to resolve any difficulties.

But just how difficult should the most difficult mathematical
arguments be? Although it meant sliding over some very important
points, f resolved to keep things easy compared with, sol, the more
difficult parts of Newman's The World of Mathematics. When the
going is vefy difficult, I have merely indicated the general nature of
the sort of mathematics used rather than trying to describe its con-
tent clearly.

Nonetheless, this book has sections which will be hard for the



nonmathematical reader. I advise him merely to skim tfrro.rl
these, gathering what he can. When he has gone through the book
in this manner, he will see why the difficult sections are there. Then
he can turn back and restudy them if he wishes. But, had I not
put these difficult sections in, and had the reader wanted the sort
of understandirg that takes real thought, he would have been stuck.
As far as I know, other available literature on information theory
is either too simple or too difficult to help the diligent but inexpert
reader beyond the easier parts of this book. I might note also that
some of the literature is confused and some of it is just plain wrong.

By this sort of talk I may have raised wonder in the reader's
mind as to whether or not information theory is really worth so
much trouble, either on his part, for that matter, or on mine. I can
only say that to the degree that the whole world of science and
technology around us is important, information theory is important,
for it is an important part of that world. To the degree to which an
intelligent reader wants to know somethirg both about that world
and about information theory, it is worth his while to try to get a
clear picture. Such a picture must show information theory neither
as something utterly alien and unintelligible nor as something that
can be epitomized in a few easy words and appreciated without
eftort.

The process of writing this book was not easy. Of course it could
never have been written at all but for the work of Claude Shannoo,
who, besides inspiring the book through his work, read the original
manuscript and suggested several valuable changes. David Slepian
jolted me out of the rut of error and confusion in an even more
vigorous way. E. N. Gilbert deflected me from error in several
instances. Milton Babbitt reassured me concerning the major
contents of the chapter on information theory and art and suggested
a few changes. P. D. Bricker, H. M. Jenkins, and R. N. Shepard
advised me in the field of psycholog|, but the views I finally ex-
pressed should not be attributed to them. The help of M. V.
Mathews was invaluable. Benoit Mandelbrot helped me with
Chapter XII. J. P. Runyon read the manuscript with care, and Eric
Wolman uncovered an appalling number of textual errors, and
made valuable suggestions as well. I am also indebted to Prof.
Martin Harwit, who persuaded me and Dover that the book was
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worth reissuing. The reader is indebted to James R. Newman for
the fact that I have provided a gloss ar!, summaries at the ends of
some chapters, and for my final attempts to make some difficult
points a lit-tle clearer. To all of these I am indebted and not less to
Miss F. M. Costello, who triumphed over the chaos of preparing
and correcting the manuscript and figures. fn preparing this new
edition, I owe much to my secreta{I, Mrs. Patricia J. Neill.

September, 1979 J. R. Ptnncn



CHAPTER I The World and
Theories

IN 1948, CrnunE E. SnnNNoN published a paper called "A
Mathematical Theory of Communication"; it appeared in book
form in 1949. Before that time, a few isolated workers had from
time to time taken steps toward a general theory of communication.
Now, thirty years later, communication theory, or information
theory as it is sometimes called, is an accepted field of research.
Many books on communication theory have been published, and
many international symposia and conferences have been held.
The Institute of Electrical and Electronic Engineers has a pro-
fessional group on information theory, whose Transactions appear
six times a year. Many other journals publish papers on informa-
tion theory.

All of us use the words communication and information, and
we are unlikely to underestimate their importance. A modern
philosopher, A. J. Ayer, has commented on the wide meaning and
importance of communication in our lives. We communicate, he
observes, not only information, but also knowledge, error, opinions,
ideas, experiences, wishes, orders, emotions, feelings, moods. Heat
and motion can be communicated. So can strength and weakness
and disease. He cites other examples and comments on the mani-
fold manifestations and puzzltng features of communication in
manos world.

Surely, communication being so various and so important, a
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theory of communication, a theory of generally accepted soundness
and usefulness, must be of incomparable importance to all of us.
When we add to theory the word mathematical, with all its impli-
cations of rigor and magic, the att:raction becomes almost irre-
sistible. Perhaps if we learn a few formulae our problems of
communication will be solved, and we shall become the masters
of information rather than the slaves of misinformation.

Unhappily, this is not the course of science. Some 230A years
ego, another philosopher, Aristotle, discussed in his Physics a
notion as universal as that of communication, that is, motion.

Aristotle defined motion as the fulfillment, insofar as it exists
potentially, of that which exists potentially. He included in the
concept of motion the increase and decrease of that which can be
increased or decreased, coming to and passing away, and also being
built. He spoke of three categories of motion, with respect to
magnitude, affectior, and place. He foutrd, indeed, &S he said, &S
many types of motion as there are meanings of the word ls.

Here we see motion in all its manifest complexity. The com-
plexity is perhaps a little bewildering to us, for the associations of
words differ in different languages, and we would not necessarily
associ ate motion with all the changes of which Aristotle speaki.

How puzzltng this universal matter of motion must have been
to the followers of Aristotle. It remained puzzling for over two
millennia, until Newton enunciated the laws which engineers still
use in designing machines and astronomers in studying the motions
of stars, planets, and satellites. While later physicists have found
that Newton's laws are only the special forms which more general
laws assume when velocities are small compared with that of light
and when the scale of the phenomena is large compared with the
atom, they are a living part of our physics rather than a historical
monument. Surely, when motion is so important a part of our
world, we should study Newton's laws of motion. They say:

l. A body continues at rest or in motion with a consiuttiu.locity
in a straight line unless acted upon by u force.

2. The change in velocity of a body is in the direction of the force
acting on it, and the magnitude of the change is proportional to
the force acting on the body times the tirne during which the force
acts, and is inversely proportional to the mass of the body.
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3. Whenever a first body exerts a force on a second body, the
second body exerts an equal and oppositely directed force on the
first body.

To these laws Newton added the universal law of gravitation:
4. Two particles of matter attract one another with a force act-

irg along the line connecting them, a force which is proportional
to the product of the masses of the particles and inversely propor-
tional to the square of the distance separating them.

Newton's laws brought about a scientific and a philosophical
revolution. Using them, Laplace reduced the solar system to an
explicable machine. They have formed the basis of aviation and
rocketry, as well as of astronomy. Yet, they do little to answer many
of the questions about motion which Aristotle considered. New-
ton's laws solved the problem of motion as Newton defined it,
not of motion in all the senses in which the word could be used in
the Greek of the fourth century before our Lord or in the English
of the twentieth century after.

Our speech is adapted to our daily needs or, perheps, to the needs
of our ancestors. We cannot have a separate word for every distinct
object and for every distinct event; if we did we should be forever
coining words, and communication would be impossible. In order
to have language at all, many things or many events must be
referred to by one word. It is natural to say that both men and
horses run (though we may prefer to say that horses gallop) and
convenient to say that a motor runs and to speak of a run in a
stocking or a run on a bank.

The unity among these concepts lies far more in our human
language than in any physical similarity with which we can expect
science to deal easily and exactly. It would be foolish to seek some
elegant, simple, and useful scientific theory of runrirg which would
embrace runs of salmon and runs in hose. It would be equally
foolish to try to embrace in one theory all the motions discussed
by Aristotle or all the sorts of communication and information
which later philosophers have discovered.

In our everyday language, we use words in a way which is con-
venient in our everyday business. Except in the study of language
itself, science does not seek understanding by studying words and
their relations. Rather, science looks for things in nature, including
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our human nature and activities, which can be grouped together
and understood. Such understanding is an ability to see what
complicated or diverse events really do have in common (the
planets in the heavens and the motions of a whirling skater on ice,
for instance) and to describe the behavior accurately and simply.

The words used in such scientific descriptions are often drawn
from our everyday vocabulary. Newton used force, mass, velocity,
and attraction. When used in science, however, a particular mean-
itg is given to such words, a meaning narrow and often new. We
cannot discuss in Newton's terms force of circumstance, mass
media, or the attraction of Brigitte Bardot. Neither should we
expect that cofirmunication theory will have something sensible to
say about every question we can phrase using the words communi-
cation or information.

A valid scientific theory seldom if ever offers the solution to the
pressing problems which we repeatedly state. It seldom supplies
a sensible answer to our multitudinous questions. Rather than
ration altzing our ideas, it discards them entirely, or, rather, it
leaves them as they were. It tells us in a fresh and new way what
aspects of our experience can profitably be related and simply
understood. In this book, it will be our endeavor to seek out the
ideas concerning communication which can be so related and
understood.

When the portions of our experience which can be related have
been singled out, and when they have been related and understood,
we have a theory concerning these matters. Newton's laws of
motion form an important part of theoretical physics, a field called
mechanics. The laws themselves are not the whole of the theory;
they are merely the basis of it, as the axioms or postulates of
geometry are the basis of geometry. The theory embraces both the
assumptions themselves and the mathematical workirg out of the
logical consequences which must necessarily follow from the
assumptions. Of course, these consequences must be in accord
with the complex phenomena of the world about us if the theory
is to be a valid theory, and an invalid theory is useless.

The ideas and assumptions of a theory determine the generality
of the theory, that is, to how wide a range of phenomena the
theory applies. Thuso Newton's laws of motion and of gravitation
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are very general; they explain the motion of the planets, the time-
keeping properties of a pendulum, and the behavior of all sorts of
maitrines and mechanisms. They do not, however, explain radio
waves.

Maxwell's equationsl explain all (non-quantum) electrical phe-
nomena; they are very general. A branch of electrical theory called
network theory deals with the electrical properties of electrical
circuits, or networks, made by interconnecting three sorts of ideal-
tzed electrical structures: resistors (devices such as coils of thin,
poorly conducting wire or films of metal or carbon, which impede
Itre flow of current), inductors (coils of copper wire, sometimes
wound on magnetic cores), and capacitors (thin sheets of metal
separated by an insulator or dielectric such as mica or plastic; th,e
Leyde n jar was an early form of capacitor). Because network
theory deals only with the electrical behavior of certain speciali-ed
and tdeahzed physical structures, while Maxwell's equations de-
scribe the electrical behavior of any physical structure, a physicist
would say that network theory is /ess general than are Maxwell's

equations, for Maxwell's equations cover the behavior not only of
id-ealized electrical networks but of all physical structures and
include the behavior of radio waves, which lies outside of the scope
of network theory.

Certainly, the most general theory, which explains the greatest
range of phenomena, is the most powerful and the best; it can

always be specialtzedto deal with simple cases. That is why physi-
cists have iought a unified field theory to embrace mechanical
laws and gravitation and all electrical phenomena. It might, indeed,
seem that all theories could be ranked in order of generality, and,
if this is possible, we should certainly like to know the place of
communication theory in such a hierarchy.

Unfortunately, life isn't as simple as this. In one sense, network
theory is less general than Maxwell's equations. In another sense,

1[n 1873, in his treatise Electrict i ty and Magnetism, James Clerk Maxwell pre-

sented and fully explained for the first time the natural laws relating electric and

magnetic fields and electric currents. He showed that there should be electromagnetic

,oirt (radio waves) which travel with the speed of light. Hertz later demonstrated

these experimentally, and we now know that light is electromagnetic waves. Max-

well's equations are the mathematical statement of Maxwell's theory of electricity

and magnetism. They are the foundation of all electric art.
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however, it is more general, for all the mathematical results of
network theory hold for vibrating mechanical systems made up of
idealized mechanical components as well as for the behavioi of
interconnections of idealned electrical components. In mechanical
applications, a spring corresponds to a capacitor, a mass to an
inductor, and a dashpot or damper, such as that used in a door
closer to keep the door from slamming, corresponds to a resistor.
In fact, network theory might have been developed to explain the
behavior of mechanical systems, and it is so used in the field of
acoustics. The fact that network theory evolved from the study of
idealized electrical systems rather than from the study of ideahzed
mechanical systems is a matter of history, not of necessity.

Because all of the mathematical results of network theory apply
to certain specialized and idealized mechanical systems, as well as
to certain specialtzed and ideahzed electrical systems, we can say
that in a sense network theory is more general than Maxwellts
equations, which do not apply to mechanical systems at all. In
another sense, of course, Maxwell's equations are more general
than network theo{y, for Maxwell's equations apply to all electrical
systems, not merely to a specialized and tdealized class of electrical
circuits.

To some degree we must simply admit that this is so, without
being able to explain the fact fully. Yet, we can say this much.
Some theories are very strongly physical theories. Newton's laws
and Maxwell's equations are such theories. Newton's laws deal
with mechanical phenomena; Maxwell's equations deal with elec-
trical phenomena. Network theory is essentially a mathematical
theory. The terms used in it can be given various physical mean-
ings. The theory has interesting things to say about different physi-
cal phenomena, about mechanical as well as electrical vibrations.

Often a mathematical theory is the offshoot of a physical theory
or of physical theories. It can be an elegant mathematical formula-
tion and treatment of certain aspects of a general physical theory.
Network theory is such a treatment of certain physical behavior
common to electrical and mechanical devices. A branch of mathe-
matics called potential theory treats problems common to electric,
magnetic, and gravitational fields and, indeed, in a degree to aero-
dynamics. Some theories seem, however, to be more mathematical
than physical in their very inception.
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We use many such mathematical theories in dealing with the
physical world. Arithmetic is one of these. If we label one of a
group of apples, dogs, or men l, another 2, and so on, and if we
have used up just the first 16 numbers when we have labeled all
members of the group, we feel confident that the group of objects
can be divided into two equal groups each containing 8 objects
(16 + 2_ 8) or that the objects can be arranged in a square
affay of four parallel rows of four objects each (because l6 is a
perfect square; 16 _ 4 X 4). Further, if we line the apples, dogs,
or men up in a row, there are 2,092,278,988,800 possible sequences
in which they can be arranged, corresponding to the 2,092,278,-
988,800 different sequences of the integers I through 16. If we used
up 13 rather than 16 numbers in labeling the complete collection
of objects, we feel equally certain that the collection could not be
divided into any number of equal heaps, because 13 is a prime
number and cannot be expressed as a product of factors.

This seems not to depend at all on the nature of the objects.
Insofar as we can assign numbers to the members of any collection
of objects, the results we get by addirg, subtracting, multiplying,
and dividing numbers or by arrangirg the numbers in sequence
hold true. The connection between numbers and collections of
objects seems so natural to us that we may overlook the fact that
arithmetic is itself a mathematical theory which can be applied to
nature only to the degree that the properties of numbers correspond
to properties of the physical world.

Physicists tell us that we can talk sense about the total number
of a group of elementary particles, such as electrons, but we can't
assign particular numbers to particular particles because the par-
ticles are in a very real sense indistinguishable. Thus, we can't talk
about arrangitg such particles in different orders, as numbers can
be arranged in different sequences. This has important conse-
quences in a part of physics called statistical mechanics. We may
also note that while Euclidean geometry is a mathematical theory
which serves surveyors and navigators admirably in their practical
concerns, there is reason to believe that Euclidean geometry is not
quite accurate in describirg astronomical phenomena.

How can we describe or classify theories? We can say that a
theory is very narrow or very general in its scope. We can also
distinguish theories as to whether they are strongly physical or
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strongly mathematical. Theories are strongly physical when they
describe very completely some range of physical phenomena,
which in practice is always limited. Theories become more mathe-
matical or abstract when they deal with an idealized class of
phenomena or with only certain aspects of phenomena. Newton's
laws are strongly physical in that they afford a complete description
of mechanical phenomena such as the motions of the planets or
the behavior of a pendulum. Network theory is more toward the
mathematical or abstract side in that it is useful in dealirg with a
variety of tdeahzed physical phenomena. Arithmetic is very mathe-
matical and abstract; it is equally at home with one particular
property of many sorts of physical entities, with numbers of dogs,
numbers of men, and (if we remember that electrons are indistin-
guishable) with numbers of electrons. It is even useful in reckoning
numbers of days.

In these terms, communication theory is both very strongly
mathematical and quite general. Although communication theory
grew out of the study of electrical communication, rt attacks prob-
lems in a very abstract and general way. It provides, in the bit, a
universal measure of amount of information in terms of choice or
uncertainty. Specifying or learning the choice between two equally
probable alt.*utives, *hirh miglit be messages or numbers to bb
transmitted, involves one bit of information. Communication
theory tells us how many bits of information can be sent per second
over perfect and imperfect communication channels in terms of
rather abstract descriptions of the properties of these channels.
Communication theory tells us how to measure the rate at which
a message source, such as a speaker or a writer, generates informa-
tion. Communication theory tells us how to represent, or encode,
messages from a particular message source efficiently for trans-
mission over a particular sort of channel, such as an electrical
circuit, and it tells us when we can avoid errors in transmission.

Because communication theory discusses such matters in very
general and abstract terms, it is sometimes difficult to use the
understanding it gives us in connection with particular, practical
problems. However, because communication theory hal such an
abstract and general mathematical form, it has a very broad field
of application. Communication theory is useful in connection with
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written and spoken language, the electrical and mechanical trans-
mission of messag€S, the behavior of machines, and, perhaps, the
behavior of people. Some feel that it has great relevance and
importance to physics in a way that we shall discuss much later
in this book.

Primarily, however, communication theory is, as Shannon de-
scribed it, a mathematical theory of communication. The concepts
are formulated in mathematical terms, of which widely different
physical examples can be given. Engineers, psychologists, and
physicists may use communication theory, but it remains a mathe-
matical theory rather than a physical or psychological theory or
an engineering art.

It is not easy to present a mathematical theory to a general
audience, yet communication theory is a mathematical theory,
and to pretend that one can discuss it while avoiding mathematics
entirely would be ridiculous. Indeed, the reader may be startled
to find equations and formulae in these pages; these state accur-
ately ideas which are also described in words, and I have included
an appendix on mathematical notation to help the nonmathe-
matical reader who wants to read the equations aright.

I am aware, however, that mathematics calls up chiefly unpleas-
ant pictures of multiplication, division, and perhaps square roots,
as well as the possibly traumatic experiences of high-school class-
rooms. This view of mathematics is very misleading, for it places
emphasis on special notation and on tricks of manipulation, rather
than on the aspect of mathematics that is most important to mathe-
maticians. Perhaps the reader has encountered theorems and
proofs in geometry; perhaps he has not encountered them at all,
yet theorems and proofs are of prim ary importance in all mathe-
matics, pure and applied. The important results of information
theory are stated in the form of mathematical theoreffis, and these
are theorems only because it is possible to prove that they are true
statements.

Mathematicians start out with certain assumptions and defini-
tions, and then by means of mathematical arguments or proofs they
are able to show that certain statements or theorems are true. This
is what Shannon accomplished in his "Mathematical Theory of
Cornmunication.'o The truth of a theorem depends on the validity
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of the assumptions made and on the validity of the argument or
proof which is used to establish it.

All of this is pretty abstract. The best way to give some idea of
the meaning of theorem and proof is certainly by means of ex-
amples. I cannot do this by askirg the general reader to grapple,
one by one and in all their gory detail, with the difficult theorems
of communication theory. Really to understand thoroughly the
proofs of such theorems takes time and concentration even for one
with some mathematical background. At best, we can try to get
at the content, meanitrg, and importance of the theorems.

The expedient I propose to resort to is to give some examples
of simpler mathematical theorems and their proof. The first
example concerns a game calle d hex, or Ir{ash. The theorem which
will be proved is that the player with first move can win.

Hex is played on a board which is an array of forty-nine hexa-
gonal cells or spaces, as shown in Figure I- I, into which markers
may be put. One player uses black markers and tries to place them
so as to form a continuous, if wandering, path between the black
area at the left and the black area at the right. The other player uses
white markers and tries to place them so as to form a continuous,
if wandering, path between the white area at the top and the white
area at the bottom. The players play alternately, each placing one
marker per play. Of course, one player has to start first.
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In order to prove that the first player can win, it is necess ary
first to prove that when the game is played out, so that there is
either a black or a white marker in each cell, one of the players
must have worr.

Theorem I: Either one player or the other wins.
Discussion: In playing some games, such as chess and ticktack-

toe, it may be that neither player will win, that is, that the game
will end in a draw. In matching heads or tails, one or the other
necessarily wins. What one must show to prove this theorem is
that, when each cell of the hex board is covered by either a black
or a white marker, either there must be a black path between the
black areas which will interrupt any possible white path between
the white areas or there must be a white path between the white
areas which will interrupt any possible black path between the
black areas, so that either white or black must have won.

Proof: Assume that each hexagon has been filled in with either
a black or a white marker. Let us start from the left-hand corner
of the upper white border, point I of Figure I-2, and trace out the
bound ary between white and black hexagons or borders. We will
proceed always along a side with black on our right and white on
our left. The bound ary so traced out will turn at the successive
corners, or vertices, at which the sides of hexagons meet. At a
corner, or vertex, we can have only two essentially different con-
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ditions. Either there will be two touching black hexagons on the
right and one white hexagon on the left, as in a of Figure I-3, or
two touching white hexagons on the left and one black hexagon
on the right, as shown tn b of Figure I-3. We note that in either
case there will be a continuous black path to the right of the
boundary and a continuous white path to the left of the boundary.
We also note that in neither a tror b of Figure I-3 can the bound ary
cross or join itself, because only one path through the vertex has
black on the right and white on the left. We can see that these two
facts are true for boundaries between the black and white borders
and hexagons as well as for boundaries between black and white
hexagons. Thus, along the left side of the boundary there must be
a continuous path of white hexagons to the upper white border,
and along the right side of the bound ary there must be a continu-
ous path of black hexagons to the left black border. As the
bound ary cannot cross itself, it cannot circle indefinitely, but must
eventually reach a black border or a white border. If the boundary
reaches a black border or white border with black on its right and
white on its left, as we have prescribed, at any place except corner
II or corner III, we can extend the bound ary further with black on
its right and white on its left. Hence, the bound ary will reach either
point II or point III. If it reaches point II, as shown in Figure I-2,
the black hexagons on the right, which are connected to the left
black border, will also be connected to the right black border,
while the white hexagons to the left will be connected to the upper
white border only, and black will have won. It is clearly impossible
for white to have won also, for the continuous band of adjacent

(a)
Fig. I-3

(b )
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black cells from the left border to the right precludes a continuous
band of white cells to the bottom border. We see by similar argu-
ment that, if the bound ary reaches point III, white will have won.

Theorem II: The player with the first move can win.
Discussion: By can is meant that there exists a way, if only the

player were wise enough to know it. The method for winning would
consist of a particular first move (more than one might be allow-
able but are not necessary) and a chart, formula, or other specifi-
cation or recipe giving a correct move following any possible move
made by his opponent at any subsequent stage of the game, such
that if, each time he plays, the first player makes the prescribed
move, he will win regardless of whit moves his opponent may
make.

Proof: Either there must be some way of play which, if followed
by the first player, will insure that he wins or else, no matter how
the first player plays, the second player must be able to choose
moves which will preclude the first player from winning, so that he,
the second player, will win. Let us assume that the player with the
second move does have a sure recipe for winning. Let the player
with the first move make his first move in any wa), and then, after
his opponent has made one move, let the player with the flrst
move apply the hypothetical recipe which is supposed to allow the
player with the second move to win. If at any time a move calls for
putting a piece on a hexagon occupied by u piece he has already
played, let him place his piece instead on any unoccupied space.
The designated space will thus be occupied. The fact that by
starting first he has an extra piece on the board may keep his
opponent from occupyirg a particular hexagon but not the player
with the extra piece. Hence, the first player can occupy the hexa-
gons designated by the recipe and must win. This is contrary to
the original assumption that the player with the second move can
win, and so this assumption must be false. Instead, it must be
possible for the player with the first move to win.

A mathematical purist would scarcely regard these proofs as
rigorous in the form given. The proof of theorem II has another
curious feature; it is not a constructive proof. That is, it does not
show the player with the first move, who can win in principle, how
to go about winning. We will come to an example of a constructive

l 3
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proof in a moment. First, however, it may be appropriate to phil-
osophize a little concerning the nature of theorems and the need
for proving them.

Mathematical theorems are inherent in the rigorous statement
of the general problem or field. That the player with the first move
can win at hex is necessarily so once the game and its rules of play
have been specified. The theorems of Euclidean geometry are
necessarily so because of the stated postulates.

With sufficient intelligence and insight, we could presumably see
the truth of theorems immediately. The young Newton is said to
have found Euclid's theorems obvious and to have been impatient
with their proofs.

Ordinarrly, while mathematicians may suspect or conjecture the
truth of certain statements, they have to prove theorems in order
to be certain. Newton himself came to see the importance of proof,
and he proved many new theorems by using the methods of Euclid.

By and large, mathematicians have to proceed step by step in
attainirg sure knowledge of a problem. They laboriously prove one
theorem after another, rather than seeing through everything in a
flash. Too, they need to prove the theorems in order to convince
others.

Sometimes a mathematician needs to prove a theorem to con-
vince himself, for the theorem may seem contrary to common
sense. Let us take the followirg problem as an example: Consider
the square, I inch on a side, at the left of Figure I-4. We can specify
any point in the square by givitg two numbers, )/, the height of
the point above the base of the square, and x, the distance of the
point from the left-hand side of the square. Each of these numbers
will be less than one. For instance, the point shown will be repre-
sented by

x - 0.547000 . . . (ending in an endless sequence of zeros)
y - 0.312000 . . . (ending in an endless sequence of zeros)

Suppose we pair up points on the square with points on the line,
so that every point on the line is paired with just one point on the
square and every point on the square with just one point on the
line. If we do this, we are said to have mapped the square onto
the line in a one-to-one w&), or to have achieved a one-to-one map-
ping of the square onto the line.
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Fig. I-4

Theorem: It is possible to map a square of unit ereo onto a line
of unit length in a one-to-one wa/.z

Proof: Take the successive digits of the height of the point in
the square and let them form the first, third, fifth, and so on digits
of a number x'. Take the digits of the distance of the point P from
the left side of the square, and let these be the second, fourth,
sixth, etc., of the digits of the number x'. Let x' be the distance of
the point P' from the left-hand end of the line. Then the point P'
maps the point P of the square onto the line uniquely, in a one-
to-one way.We see that changing either x or7 will change x'to a
new and appropriate number, and changirg x' will change x and
y. To each point x,y in the square corresponds just one point x'
on the line, and to each point x' on the line corresponds just one
point x,y Ln the square, the requirement for one-to-one mapping.3

In the case of the example given before

x = 0 . 5 4 7 0 0 0 . . .
y - 0.3 12000 . . .
y '  : 0 . 3 5  1 4 2 7 W 0 . . .

In the case of most points, including those specified by irrational
numbers, the endless string of digits representing the point will not
become a sequence of zeros nor will it ever repeat.

Here we have an example of a constructive proof. We show that
we can map each point of a square into a point on a line segment
in a one-to-one way by giving an explicit recipe for doing this.
Many mathematicians prefer constructive proofs to proofs which

z This has been restricted for convenience; the size doesn't matter.
s This proof runs into resolvable difficulties in the case of some numbers such as

t/2, which can be represented decimally .5 followed by an infinite sequence of zeros
or .4 followed by an infinite sequence of nines.
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Y
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are not constructive, and mathematicians of the intuitionist school
reject nonconstructive proofs in dealing with infinite sets, in which
it is impossible to examine all the members individually for the
property in question.

Let us now consider another matter concerning the mapping of
the points of a square on a line segment. Imagine that we move
a pointer along the line, and imagine a pointer simultaneously
moving over the face of the square so as to point out the points
in the square corresponding to the points that the first pointer
indicates on the line. We might imagine (contrary to what we shall
prove) the followirg: If we moved the first pointer slowly and
smoothly along the line, the second pointer would move slowly and
smoothly over the face of the square. A11 the points lying in a small
cluster on the line would be represented by points lying in a small
cluster on the face of the square. If we moved the pointer a short
distance along the line, the other pointer would move a short
distance over the face of the square, and if we moved the pointer
a shorter distance along the line, the other pointer would move a
shorter distance across the face of the square, and so on. If this
were true we could say that the one-to-one mapping of the points
of the square into points on the line was continuous.

However, it turns out that a one-to-one mapping of the points
in a square into the points on a line cannot be continuous. As we
move smoothly along a curve through the square, the points on
the line which represent the successive points on the square neces-
sarily jt*p around erratically, not only for the mapping described
above but for any one-to-one mapping whatever. Aty one-to-one
mapping of the square onto the line ts discontinuotrs.

Theorem: Any one-to-one mapping of a squore onto a line must
be discontinuous.

Proof: Assume that the one-to-one mapping is continuous. If
this is to be so then all the points along some arbitrary curve AB
of Figure I-5 on the square must map into the points lying between
the corresponding points A' and B'.If they did not, in moving along
the curve in the square we would either j.r*p from one end of the
line to the other (discontinuous mapping) or pass through one
point on the line twice (not one-to-one mapping). Let us now
choose a point C' to the left of line segment A'B' and D' to the
right of A'B' and locate the corresponding points C and D rn the
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c 'XB'D '
Fig. I-5

square. Draw a curve connecting C and D and crossing the curve
from A to B. Where the curve crosses the curve AB it will have a
point in common with AB; hence, this one point of CD must map
into a point lying betwe en A' and B', and all other points which
are not on A.B must map to points lying outside of A'B', either to
the left or the right of A'B'. This is contrary to our assumption that
the mapping was continuous, and so the mapping cannot be
continuous.

We shall find that these theoreffis, that the points of a square
can be mapped onto a line and that the mapping is necessarily
discontinuous, are both important in communication theory, so we
have proved one theorem which, unlike those conceroirg hex, will
be of some use to us.

Mathematics is a way of findirg out, step by step, facts which
are inherent in the statement of the problem but which are not
immediately obvious. Usually, in applying mathematics one must
first hit on the facts and then verify them by proof. Here we come
upon a knotty problem, for the proofs which satisfied mathema-
ticians of an earlier duy do not satisfy modern mathematicians.

In our own duy, an irascible minor mathematician who reviewed
Shannon's original paper on communication theory expressed
doubts as to whether or not the author's mathematical intentions
were honorable. Shannon's theorems are true, however, and proofs
have been given which satisfy even rigor-crazed mathematicians.
The simple proofs which I have given above as illustrations of
mathematics are open to criticism by purists.

What I have tried to do is to indicate the nature of mathematical
reasoning, to give some idea of what a theorem is and of how it
may be proved. With this in mind, we will go on to the mathe-
matical theory of communication, its theorems, which we shall not
really prove, and to some implications and associations which



r8 Symbols, Signals and Noise

extend beyond anything that we can establish with mathematical
certainty.

As I have indicated earlier in this chapter, communication
theory as Shannon has given it to us deals in a very broad and
abstract way with certain important problems of communication
and information, but it cannot be applied to all problems which
we can phrase using the words communication and information
in their many popular senses. Communication theory deals with
certain aspects of communication which con be associated and
organized in a useful and fruitful way, just as Newton's laws of
motion deal with mechanical motion only, rather than with all the
named and indeed different phenomena which Aristotle had in
mind when he used the word motion.

To succeed, science must attempt the possible. We have no
reason to believe that we can unify all the things and concepts for
which we use a common word. Rather we must seek that part of
experience which can be related. When we have succeeded in
relating certain aspects of experience we have a theory. Newton's
laws of motion are a theory which we can use in dealing with
mechanical phenomena. Maxwell's equations are a theory which
we can use in connection with electrical phenomena. Network
theory we can use in connection with certain simple sorts of elec-
trical or mechanical devices. We can use arithmetic very generally
in connection with numbers of men, stones, of stars, and geometry
in measuring land, sea, or galaxies.

Unlike Newton's laws of motion and Maxwell's equations, which
are strongly physical in that they deal with certain classes of
physical phenomena, communication theory is abstract in that it
applies to many sorts of communication, written, acoustical, or
electrical. Communication theory deals with certain important but
abstract aspects of communication. Communication theory pro-
ceeds from clear and definite assumptions to theorems concerning
information sources and communication channels. In this it is
essentially mathematical, and in order to understand it we must
understand the idea of a theorem as a statement which must be
proved, that is, which must be shown to be the necess ary conse-
quence of a set of initial assumptions. This is an idea which is the
very heart of mathematics as mathematicians understand it.



CHAPTER II The Origins of
Information Theory

MrN HAvE BEEN at odds concerning the value of history. Some
have studied earlier times in order to find a universal system of
the world, in whose inevitable unfoldirg we can see the future as
well as the past. Others have sought in the past prescriptions for
success in the present. Thus, some believe that by studying scientific
discovery in another duy we can learn how to make discoveries.
On the other hand, one sage observed that we learn nothing from
history except that we never learn anything from history, and
Henry Ford asserted that history is bunk.

All of this is as far beyond me as it is beyond the scope of this
book. I will, howevero maintain that we can learn at least two
things from the history of science.

One of these is that many of the most general and powerful
discoveries of science have arisen, not through the study of phe-
nomena as they occur in nature, but, rather, through the study of
phenomena in man-made devices, in products of technology, if you
will. This is because the phenomena in man's machines are simpli-
fied and ordered in comparison with those occurring naturally, and
it is these simplified phenomena that man understands most easily.

Thus, the existence of the steam engine, in which phenomena
involvitg heat, pressure, vap orizatior, and condensation occur in a
simple and orderly fashion, gave tremendous impetus to the very
powerful and general science of thermodynamics. We see this

l 9
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especially in the work of Carnot.l Our knowledge of aerodynamics
and hydrodynamics exists chiefly because airplanes and ships
exist, not because of the existence of birds and fishes. Our knowl-
edge of electricity came mainly not from the study of lightning,
but from the study of man's artifacts.

Similarly, we shall find the roots of Shannon's broad and ele-
gant theory of communication in the simplified and seemingly
easily intelligible phenomena of telegraphy.

The second thing that history can teach us is with what difficulty
understanding is won. Today, Newton's laws of motion seem
simple and almost inevitable, yet there was a day when they were
undreamed of, a day when brilliant men had the oddest notions
about motion. Even discoverers themselves sometimes seem in-
credibly dense as well as inexplicably wonderful. One might expect
of Maxwell's treatise on electricity and magnetism a bold and
simple pronouncement concerning the great step he had taken.
Instead, it is cluttered with all sorts of such lesser matters as once
seemed important, so that a naive reader might search long to find
the novel step and to restate it in the sirnple manner familiar to us.
It is true, however, that Maxwell stated his case clearly elsewhere.

Thus, a study of the origins of scientific ideas can help us to value
understanding more highly for its having been so dearly won. We
can often see men of an earlier duy stumbling along the edge of
discovery but unable to take the final step. Sometimes we are
tempted to take it for them and to say, because they stated many
of the required concepts ir juxtaposition, that they must really have
reached the general conclusion. This, alas, is the same trap into
which many an ungrateful fellow falls in his own life. When some-
one actually solves a problem that he merely has had ideas about,
he believes that he understood the matter all along.

Properly understood, then, the origins of an idea can help to
show what its real content is; what the degree of understanding
was before the idea came along and how unity and clarity have
been attained. But to attain such understanding we must trace the
actual course of discovery, not some course which we feel discovery

1N. L.  S.  Carnot(1796-1832) f i rs t  proposed an ideal  expansion of  gas ( the Carnot

cycle) which will extract the maximum possible mechanical energy from the thermal

energy of the steam.
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should or could have taken, and we must see problems (if we can)
as the men of the past saw them, not as we see them today.

In looking for the origin of communication theory one is apt to
fall into an almost trackless morass. I would gladly avoid this
entirely but cannot, for others continually urge their readers to
enter it. I only hope that they will emerge unharmed with the help
of the followirg grudgingly given guidance.

A particular quantity called entropl is used in thermodynamics
and in statistical mechanics. A quantity called entropy is used in
communication theory. After all, thermodynamics and statistical
mechanics are older than communication theory. Further, in a
paper published in 1929, L. Szilard, a physicist, used an idea of
information in resolving a partrcular physic al paradox. From these
facts we might conclude that communication theory somehow grew
out of statistical mechanics.

This easy but misleading idea has caused a great deal of confu-
sion even among technical men. Actually, communication theory
evolved from an effort to solve certain problems in the field of
electrical communication. Its entropy was called entropy by mathe-
matical analogy with the entropy of statistical mechanics. The
chief relevance of this entropy is to problems quite different from
those which statistical mechanics attacks.

In thermodynamics, the entropy of a body of gas depends on its
temperature, volume, and mass-and on what gas it is-just as the
energy of the body of gas does. If the gas is allowed to expand in
a cylinder, pushing on a slowly movirg piston, with no flow of heat
to or from the gos, the gas will become cooler, losittg some of its
thermal energy. This energy appears as work done on the piston.
The work ma), for instance, lift a weight, which thus stores the
energy lost by the gas.

This is a reversible process. By this we mean that if work is done
in pushing the piston slowly back against the gas and so recom-
pressing it to its original voluffie, the exact original energy, pres-
sure, and temperature will be restored to the gas. In such a
reversible process, the entropy of the gas remains constant, while
its ene rgy changes.

Thus, entropy is an indicator of reversibility; when there is no
change of entropy, the process is reversible. In the example dis-
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cussed above, energy can be transferred repeatedly back and forth

between thermal energy of the compressed gas and mechanical

energy of a lifted weight.
Most physical phenomena are not reversible. Irreversible phe-

nomena always involve an increase of entropy.
Imagine, for instance, that a cylinder which allows no heat flow

in or out is divided into two parts by u partitior, and suppose that

there is gas on one side of the partition and none on the other.

Imagine that the partition suddenly vanishes, so that the gas

expands and fills the whole container. In this case, the thermal

energy remains the same, but the entropy increases.
Before the partition vanished we could have obtained mechani-

cal energy from the gas by lettirg it flow into the empty part of

the cylinder through a little engine. After the removal of the pat-

tition and the subsequent increase in entropy, we cannot do this.

The entropy can increase while the energy remains constant in

other similar circumstances. For instance, this happens when heat

flows from a hot object to a cold object. Before the temperatures

were equalized, mechanical work could have been done by makittg

use of the temperature difference. After the temperature difference
has disappeared, we can no longer use it in changitg part of the

thermal energy into mechanical energy.
Thus, an increase in entropy means a decrease in our ability to

change thermal energy, the energy of heat, into mechanical energy.

An increase of entropy means a decrease of available energy.

While thermodynamics gave us the concept of entropy, rt does

not give a detailed physical picture of entropy, in terms of positions

and velocities of molecules, for instance. Statistical mechanics does

give a detailed mechanical meaning to entropy in particular cases.

In general, the meaning is that an increase in entropy means a

decrease in order. But, when we ask what order means, we must

in some way equate it with knowledge. Even a very complex

arrangement of molecules can scarcely be disordered if we know

the position and velocity of every one. Disorder in the sense in

which it is used in statistical mechanics involves unpredictability

based on a lack of knowledge of the positions and velocities of

molecules. Ordinarily we lack such knowledge when the arrange-

ment of positions and velocities is "complicated."
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Let us return to the example discussed above in which all the
molecules of a gas are initially on one side of a partition in a
cylinder. If the molecules are all on one side of the partitior, and
if we know this, the entropy is less than if they are distributed on
both sides of the partition. Certainly, we know more about the
positions of the molecules when we know that they are all on one
side of the partition than if we merely know that they are some-
where within the whole container. The more detailed our knowl-
edge is concerning a physical system, the less uncertainty we have
concerning it (concerning the location of the molecules, for
instance) and the less the entropy is. Conversely, more uncertainty
means more entropy.

Thus, in physics, entropy is associated with the possibility of
converting thermal energy into mechanical energy. If the entropy
does not change during a process, the process is reversible. If ttle
entropy increases, the avatlable en ergy decreases. Statistical me-
chanics interprets an increase of entropy as a decrease in order or
if we wish, as a decrease in our knowledge.

The applications and details of entropy in physics are of course
much broader than the examples I have given can illustrate, but I
believe that I have indicated its nature and something of its impor-
tance. Let us now consider the quite different purpose and use of
the entropy of communication theory.

In communication theory we consider a message source, such
as a writer or a speaker, which may produce on a given occasion
any one of many possible messages. The amount of information
conveyed by the message increases as the amount of uncertainty
as to what message actually will be produced becomes greater. A
message which is one out of ten possible messages conveys a
smaller amount of information than a message which is one out
of a million possible messages. The entropy of communication
theory is a measure of this uncertainty and the uncertainty, or
entropy, is taken as the measure of the amount of information
conveyed by u message from a source. The more we know about
what message the source will produce, the less uncertainty, the
less the entropy, and the less the information.

We see that the ideas which gave rise to the entropy of physics
and the entropy of communication theory are quite clifferent. One
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can be fully useful without any reference at all to the other. None-
theless, both the entropy of statistical mechanics and that of
communication theory can be described in terms of uncertainty,
in similar mathematical terms. Can some significant and useful
relation be established between the two different entropies and,
indeed, between physics and the mathematical theory of com-
munication?

Several physicists and mathematicians have been anxious to
show that communication theory and its entropy are extremely
important in connection with statistical mechanics. This is still a
confused and confusirg matter. The confusion is sometimes aggra-
vated when more than one meaning of information creeps into a
discussion. Thus, information is sometimes associated with the idea
of knowledge through its popular use rather than with uncertainty
and the resolution of uncertainty, as it is in communication theory.

We witl consider the relation between cofirmunication theory
and physics in Chapter X, after arrivin g at some understanding of
communication theory. Here I will merely say that the efforts to
marry communication theory and physics have been more interest-
irg than fruitful. Certainly, such attempts have not produced
important new results or understanding, as communication theory
has in its own right.

Communication theory has its origins in the study of electrical
communication, not in statistical mechanics, and some of the
ideas important to communication theory go back to the very
origins of electrical communication.

Durin g a transatlantic voyage in L832, Samuel F. B. Morse set
to work on the first widely successful form of electrical telegraph.
As Morse first worked it out, his telegraph was much more com-
plicated than the one we know. It actually drew short and long
lines on a strip of paper, and sequences of these represented, not
the letters of a word, but numbers assigned to words in a diction-
ary or code book which Morse completed in 1837. This is (as we
shall see) an efficient form of coditg, but it is clumsy.

While Morse was working with Alfred Vail, the old coding was
given up, and what we now know as the Morse code had been
devised by 1838. In this code, letters of the alphabet are represented
by spaces, dots, and dashes. The space is the absence of an electric
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current, the dot is an electric current of short duration, and the
dash is an electric current of longer duration.

Various combinations of dots and dashes were cleverly assigned
to the letters of the alphabet. E, the letter occurring most frequently
in English text, was represented by the shortest possible code
symbol, & single dot, and, in general, short combinations of dots
and dashes were used for frequently used letters and long combi-
nations for rarely used letters. Strangely enough, the choice was
not guided by tables of the relative frequencies of various letters
in English text nor were letters in text counted to get such data.
Relative frequencies of occurrence of various letters were estimated
by counting the number of types in the various compartments of
a printer's type box!

We can ask, would some other assignment of dots, dashes, and
spaces to letters than that used by Morse enable us to send English
text faster by telegraph? Our -od.tn theory tells us that we could
only gain about 15 per cent in speed. Morse was very successful
indeed in achieving his end, and he had the end clearly in mind.
The lesson provided by Morse's code is that it matters profoundly
how one translates a message into electrical signals. This matter
is at the very heart of communication theory.

In 1843, Congress passed a bill appropriating money for the
construction of a telegraph circuit between Washington and Balti-
more. Morse started to luy the wire underground, but ran into
difficulties which later plagued submarine cables even more
severely. He solved his immediate problem by stringing the wire
on poles.

The difficulty which Morse encountered with his underground
wire remained an important problem. Different circuits which
condu ct a steady electric current equally well are not necessarily
equally suited to electrical communication. If one sends dots and
dashes too fast over an underground or undersea circuit, they are
run together at the receivirg end. As indicated in Figure II- l,
when we send a short burst of current which turns abruptly on and
off, we receive at the far end of the circuit a longer, smoothed-out
rise and fall of current. This longer flow of current may overlap
the current of another symbol sent, for instance, as an absence of
current. Thus, as shown in Figure II-2, when a clear and distinct
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T I M E

Fig" II-I

signal is transmitted it may be received as a vaguely wandering
rise and fall of current which is difficult to interpret.

Of course, if we make our dots, spaces, and dashes long enough,
the current at the far end will follow the current at the sending end
better, but this slows the rate of transmission. It is clear that there
is somehow associated with a given transmission circuit a limitirg
speed of transmission for dots and spaces. For submarine cables
this speed is so slow as to trouble telegraphers; for wires on poles
it is so fast as not to bother telegraphers. Early telegraphists were
aware of this limitation, and it, too, lies at the heart of communi-
cation theory.

S  E N T

R E C E I V E D

RECEI  VED

Fig. II-2
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Even in the face of this limitation on speed, various things can
be done to increase the number of letters which can be sent over
a given circuit in a given period of time. A dash takes three times
as long to send as a dot. It was soon appreciated that one could
gain by means of double-current telegraphy. We can understand
this by imagining that at the receivi.g end a galvanometer, a
device which detects and indicates the direction of flow of small
currents, is connected between the telegraph wire and the ground.
To indicate a dot, the sender connects the positive terminal of his
battery to the wire and the negative terminal to ground, and the
needle of the galvanometer moves to the right. To send a dash, the
sender connects the negative terminal of his battery to the wire and
the positive terminal to the ground, and the needle of the galva-
nometer moves to the left. We say that an electric current in one
direction (into the wire) represents a dot and an electric current
in the other direction (out of the wire) represents a dash. No
current at all (battery disconnected) represents a space. In actual
double-current telegraphy, a different sort of receiving instrument
is used.

In single-current telegraphy we have two elements out of which
to construct our code: current and no current, which we might call
I and 0. In double-current telegraphv we really have three elements,
which we might characterize as forward current, or current into
the wire; no current; backward current, or current out of the wire:
or as + l, 0, - l. Here the + or sign indicates the direction of
current flow and the number I gives the magnitude or strength of
the current, which in this case is equal for current flow in either
direction.

In 1874, Thomas Edison went further; in his quadruplex tele-
graph system he used two intensities of current as well as two
directions of current. He used changes in intensity, regardless of
changes in direction of current flow to send one message, and
changes of direction of current flow regardless of changes in
intensity, to send another mess age. If we assume the currents to
differ equally one from the next, we might represent the four
different conditions of current flow by means of which the two
messages are conveyed over the one circuit simultaneously as + 3,
+ l, -1, -3. The interpretation of these at the receivirg end is

shown in Tieble I.
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TenrE I

Current Transmitted
Meaning

Message I Message 2

+3
+ l
- 1
- 3

on
off
off
on

on
on
off
off

Figure II-3 shows how the dots, dashes, and spaces of two
simultaneous, independent messages can be represented by a suc-
cession of the four different current values.

Clearly, how much information it is possible to send over a
circuit depends not only on how fast one can send successive
symbols (successive current values) over the circuit but also on how
many different symbols (different current values) one has available
to choose among. If we have as symbols only the two currents + I
or 0 or, which is just as effective, the two currents + I and - l,
we can convey to the receiver only one of two possibilities at a
time. We have seen above, however, that if we can choose among
any one of four current values (any one of four symbols) at a

MESSAGE

O N

OFF

O N

OFF

+ 3

+ l

- f

- 3

CURRENT

Fig. II-3
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time, such as +3 or + 1 or - I or -3, we can convey by means
of these cuffent values (symbols) two independent pieces of infor-
mation: whether we me an a 0 or I in message I and whether we
mean a 0 or I in message2. Thus, for a given rate of sending succes-
sive symbols, the use of four current values allows us to send two
independent messages, each as fast as two current values allow us
to send one message. We can send twice as many letters per minute
by using four current values as we could using two current values.

The use of multiplicity of symbols can lead to difficulties. We
have noted that dots and dashes sent over a long submarine cable
tend to spread out and overlap. Thus, when we look for one symbol
at the far end we see, as Figure II-2 illustrates, a little of several
others. Under these circumstances, & simple identification, &S I or
0 or else + I or -1, is easier and more certain than a more com-
plicated indentification, as among +3, + l, - l, -3.

Further, other matters limit our ability to make complicated
distinctions. During magnetic storms, extraneous signals appear
on telegraph lines and submarine cables.2 And if we look closely
enougli, as we can today with sensitive electronic amplifiers, wb
see that minute, undesired currents are always present. These are
akin to the erratic Brownian motion of tiny particles observed
under a microscope and to the agitation of air molecules and of
all other matter which we associate with the idea of heat and
temperature. Extraneous currents, which we call noise, are always
present to interfere with the signals sent.

Thus, even if we avoid the overlapping of dots and spaces which
is calle d intersymbol interference, noise tends to distort the received
signal and to make difficult a distinction among many alternative
symbols. Of course, increasing the current transmitted, which
means increasing the power of the transmitted signal, helps to
overcome the effect of noise. There are limits on the power that
can be used, however. Drivin g alatge current through a submarine
cable takes alarge voltage, and alarge enough voltage can destroy
the insulation of the cable-can in fact cause a short circuit. It is
likely that the large transmitting voltage used caused the failure
of the first transatlantic telegraph cable in 1858.

z The changing magnetic field of the earth induces currents in the cables. The
changes in the earth's magnetic field are presumably caused by streams of charged
particles due to solar storms.
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Even the early telegraphists understood intuitively a good deal
about the limitations associated with speed of signaling, interfer-
ence, or noise, the difficulty in distinguishing among many alter-
native values of current, and the limitation on the power that one
could use. More than an intuitive understanding was required,
however. An exact mathematical analysis of such problems was
needed.

Mathematics was early applied to such probleffiS, though their
complete elucidation has come only in recent years. In 1855,
William Thomson, later Lord Kelvin, calculated precisely what
the received current will be when a dot or space is transmitted over
a submarine cable. A more powerful attack on such problems
followed the invention of the telephone by Alexander Graham
Bell in 1875. Telephony makes use, not of the slowly sent oflon
signals of telegraphy, but rather of currents whose strength varies
smoothly and subtly over a wide range of amplitudes with a
rapidity several hundred times as great as encountered in manual
telegraphy.

Many men helped to establish an adequate mathematical treat-
ment of the phenomena of telephony: Henri Poincar6, the great
French mathematician; Oliver Heaviside, an eccentric, English,
minor genius; Michael Pupin, of From Immigrant to Inventor fame;
and G. A. Campbell, of the American Telephone and Telegraph
Company, ate prominent among these.

The mathematical methods which these men used were an
extension of work which the French mathematician and physicist,
Joseph Fourier, had done early in the nineteenth century in connec-
tion with the flow of heat. This work had been applied to the study
of vibration and was a natural tool for the analysis of the behavior
of electric currents which change with time in a complicated fash-
ion-as the electric currents of telephony and telegraphy do.

It is impossible to proceed further on our way without under-
standing something of Fourier's contribution, a contribution which
is absolutely essential to all communication and communication
theory. Fortunately, the basic ideas are simple; it is their proof and
the intricacies of their application which we shall have to omit here.

Fourier based his mathematical attack on some of the problems
of heat flow on a very particular mathematical function called a
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sine wove. Part of a sine wave is shown at the right of Figure Il-4.
The height of the wave h varies smoothly up and down as time
passes, fluctuating so forever and ever. A sine wave has no begin-
ning or end. A sine wave is not just any smoothly wiggling curve.
The height of the wave (it may represent the strength of a current
or voltage) varies in a particular way with time. We can describe
this variation in terms of the motion of a crank connected to a shaft
which revolves at a constant speed, as shown at the left of Figure
II-4. The height h of the crank above the axle varies exactly
sinusoidally with time.

A sine wave is a rather simple sort of variation with time. It can
be charactertzed, or described, or differentiated completely from
any other sine wave by means ofjust three quantities. One of these
is the maximum height above zero, called the amplitude. Another
is the time at which the maximum is reached, which is specified
as the phase. The third is the time Z between maxim a, calIed the
period. Usually, we use instead of the period the reciprocal of the
period called the frequencl, denoted by the letter f, If the period
T of a sine wave is | / 100 second, the frequency -f i, 100 cycles per
second, abbreviated cps. A cycle is a complete variation from
crest, through trough, and back to crest again. The sine wave is
periodic in that one variation from crest through trough to crest
agarn is just like any other.

Fourier succeeded in proving a theorem concerning sine waves
which astonished his, at first, incredulous contemporaries. He
showed that any variation of a quantity with time can be accurately
represented as the sum of a number of sinusoidal variations of

I
I
h
r-

I

hl.

i'il-.
Fig. I I -4
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different amplitudes, phases, and frequencies. The quantity con-
cerned might be the displacement of a vibrating string, the height
of the surface of a rough ocean, the temperature of an electric iron,
or the current or voltage in a telephone or telegraph wire. A11 are
amenable to Fourier's analysis. Figure II-5 illustrates this in a
simple case. The height of the periodic curv e a above the centerline
is the sum of the heights of the sinusoidal curves b and c.

The mere representation of a complicated variation of some
physical quantity with time as a sum of a number of simple sinus-
oidal variations might seem a mere mathematician's trick. Its
utility depends on two important physical facts. The circuits used
in the transmission of electrical signals do not change with time,
and they behave in what is called a linear fashion. Suppose, for
instance, we send one signal, which we will call an input signal,
over the line and draw a curve showirg how the amplitude of the
received signal varies with time. Suppose we send a second input
signal and draw a curve showirg how the corresponding received
signal varies with time. Suppose we now send the sum of the two
input signals, that is, a signal whose current is at every moment
the simple sum of the currents of the two separate input signals.
Then, the received output signal will be merely the sum of the two
output signals corresponding to the input signals sent separately.

We can easily appreciate the fact that communication circuits
don't change significantly with time. Linearity means simply that

(a)

(b)

(c)

Fig. II-5
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if we know the output signals corresponding to any number of
input signals sent separately, we can calculate the output signal
when several of the input signals are sent together merely by adding
the output signals correspondirg to the input signals. In a linear
electrical circuit or transrnission systeffi, signals act as if they were
present independently of one another; they do not integact. This is,
indeed, the very criterion for a circuit being called a linear circuit.

While linearity is a truly astonishing property of nature, it is by
no means a rare one. A11 circuits made up of the resistors, capaci-
tors, and inductors discussed in Chapter I in connection with
network theory are linear, and so are telegraph lines and cables.
Indeed, usually electrical circuits are linear, except when they
include vacuum tubes, or transistors, or diodes, and sometimes
even such circuits are substantially linear.

Because telegraph wires are linear, which is just to say because
telegraph wires are such that electrical signals on them behave
independently without interacting with one another, two telegraph
signals can travel in opposite directions on the same wire at the
same time without interfering with one another. However, while
linearity is a fairly common phenomenon in electrical circuits, it
is by no means a universal natural phenomenon. Tivo trains can't
travel in opposite directions on the same track without interference.
Presumably they could, though, if all the physical phenomena
comprised in trains were linear. The reader might speculate on the
unhappy lot of a truly linear race of beings.

With the very surprisittg property of linearity in mind, let us
return to the transmission of signals over electrical circuits. We
have noted that the output signal corresponding to most input
signals has a different shape or variation with time from the input
signal. Figures II- l and II-2 illustrate this. However, it can be
shown mathematically (but not here) that, if we use a sinusoidal
signal, such as that oi Figure II-4, as an input signal to a linear
transmission path, we always get out a sine wave of the same
period, or frequency. The amplitude of the output sine wave may
be less than that of the input sine wave; we call this attenuation of
the sinusoidal signal. The output sine wave may rise to a peak later
than the input sine wave; we call this phase shtft, or delay of the
sinusoidal signal.



34 Syrnbols, Signals and Noise

The amounts of the attenuation and delay depend on the fre-
quency of the sine wave. In fact, the circuit may fail entirely to
transmit sine waves of some frequencies. Thus, corresponding to
an input signal made up of several sinusoidal components, there
will be an output signal having components of the same frequencies
but of different relative phases or delays and of different ampli-
tudes. Thus, in general the shape of the output signal will be
different from the shape of the input signal. However, the difference
can be thought of as caused by the changes in the relative delays
and amplitudes of the various components, differences associated
with their different frequencies. If the attenuation and delay of a
circuit is the same for all frequencies, the shape of the output wave
will be the same as that of the input wave; such a circuit is
distortionless.

Because this is a very important matter, I have illustrated it in
Figure II-6. In a we have an input signal which can be expressed
as the sum of the two sinusoidal components, b and c. In trans-
mission, b is neither attenuated nor delayed, so the output b' of
the same frequency as b is the same as b. However, the output c'
due to the input c is attenuated and delayed. The total output a',
the sum of b' and c', clearly has a different shape from the input
a. Yet, the output is made up of two components having the same
frequencies that are present in the input. The frequency compo-
nents merely have different relative phases or delays and different
relative amplitudes in the output than in the input.

The Fourier analysis of signals into components of various fre-
quencies makes it possible to study the transmission properties of
a linear circuit for all signals in terms of the attenuation and delay
it imposes on sine waves of various frequencies as they pass
through it.

Fourier analysis is a powerful tool for the analysis of transmis-
sion problems. It provided mathematicians and engineers with a
bewildering variety of results which they did not at first clearly
understand. Thus, early telegraphists invented all sorts of shapes
and combinations of signals which were alleged to have desirable
properties, but they were often inept in their mathematics and
wrong in their arguments. There was much dispute concerning the
efficacy of various signals in ameliorating the limitations imposed
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by circuit speed, intersymbol interference, noise, and limitations
on transmitted power.

In l9l7 , Harry Nyquist came to the American Telephone and
Telegraph Company immediately after receivirg his Ph.D. at Yale
(Ph.D.'s were considerably rarer in those days). Nyquist was a
much better mathematician than most men who tackled the prob-
lems of telegraphy, and he always was a clear, original, and
philosophical thinker concerning communication. He tackled the
problems of telegraphy with powerful methods and with clear
insight. In 1924, he published his results in an important paper,
"Certain Factors Affectirg Telegraph Speed."

( a )

(b)

(c)

( b')

(  c ' )

(  a ' )

Fig. II-6
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This paper deals with a number of problems of telegraphy.
Among other things, it clarifies the relation between the speed of
telegraphy and the number of current values such as + l, - I
(two current values) or +3, + l, -1, -3 (four current values).
Nyqtist says that if we send symbols (successive current values)
at a constant rate, the speed of transmissioil, W, is related to m,
the number of different symbols or current values avatlable, by

W -  K logm

Here K is a constant whose value depends on how many successive
current values are sent each second. The quantity log m means
logarithm of m. There are differe nt bases for taking logarithms. If
we choose 2 as a base, then the values of log m for various values
of m are given in Table II.

T.qorE II

log m

I
2
3
4
8

l 6

0
I
1 .6
2
3
4

To sum up the matter by means of an equatior, log x is such a
number that

/lot, u : X

We may see by takitg the logarithm of each side that the following
relation must be true:

log )ros, t : log x

If we write M tn place of log a we see that

I o g 2 a -  M

All of this is consistent with Table II.
We can easily see by means of an example why the logarithm is

the appropriate function in Nyqrist's relation. Suppose that we
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wish to specify two independent choices of off-or-or, 0-or-1, simul-
taneourlt. There are four possible combinations of two independ-
ent 0-or-l choices, as shown in Table III.

T,q.grn III

Number of Combination
First 0-on- I

Choice

Second O-on- 1
Choice

0
I
0
I

0
0
I
I

I
2
3
4

Further, if we wish to specify three independent choices of 0-or- I

at the same time, we find eight combinations, as shown in Table IV.

Tnnrr IV

Number of Combination
Second 0-on- | Third O-on- I

Choice Choice
First O-on- l

Choice

0
I
0
I
0
I
0
I

0
0
I
I
0
0
I
I

0
0
0
0

I
2
3
4
5
6
7
8

Similarly, if we wish to specify four independent 0-or- I choices,
we find sixteen different combinations, and, if we wish to specify
M different independent 0-or- I choices, we find 2M different
combinations.

If we can specify M rndependent 0-or- I combinations at once,
we can in effect send M tndependent messages at once, so surely
the speed should be proportional to M. But, in sending M messages
at once we have 2M possible combinations of the M tndependent
0-or- I choices. Thus, to send M messages at once, we need to be
able to sen d 2M different symbols or current values. SrrpPose that
we can choose among 2M different symbols. Nyqtist tells us that
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we should take the logarithm of the number of symbols in order
to get the line speed, and

l o g 2 a :  M

Thus, the logarithm of the number of symbols is just the number
of independent 0-or- I choices that can be represented simulta-
neously, the number of independent messages we can send at once,
so to speak.

Nyquist's relation says that by going from off-on telegraphy to
three-current (+ l, 0, - l) telegraphy we can increase the speed of
sending letters or other symbols by 60 per cent, and if we use four
current values (+3, + l, - I s -3) we can double the speed. This
is, of course, just what Edison did with his quadruplex telegraph,
for he sent two messages instead of c)ne. Further, Nyeuist showed
that the use of eight current values (0, I, 2, 3, 4, 5, 6, 7 , or +7 , + 5,
+3, * l, - 1, -3, -5 s -7) should enable us to send four times
as fast as with two current values. However, he clearly realtzedthat
fluctuations in the attenuation of the circuit, interference or noiseo
and limitations on the power which can be used, make the use of
many current values difficult.

Turning to the rate at which signal elements can be sent, Nyquist
defined the line speed as one half of the number of signal elements
(dots, spaces, current values) which can be transmitted in a second.
We will find this definition particularly appropriate for reasons
which Nyquist did not give in this early paper.

By the time that Nyquist wrote, it was common practice to send
telegraph and telephone signals on the same wires. Telephony
makes use of frequencies above 150 cps, while telegraphy can be
carried out by means of lower frequency signals. Nyquist showed
how telegraph signals could be so shaped as to have no sinusoidal
components of high enough frequency to be heard as interference
by telephones connected to the same line. He noted that the line
speed, and hence also the speed of transmissior, was proportional
to the width or extent of the range or band (in the sense of strip)
of frequencies used in telegraphy; we now call this range of fre-
quencies the band width of a circuit or of a signal.

Finally, in analyzitg one proposed sort of telegraph signal,
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Nyquist showed that it contained at all times a steady sinusoidal
component of constant amplitude. While this component formed
a part of the transmitter power used, it was useless at the receiver,
for its eternal, regular fluctuations were perfectly predictable and
could have been supplied at the receiver rather than transmitted
thence over the circuit. Nyq.rist referred to this useless component
of the signal, which, he said, conveyed no intelligence, as redundant,
a word which we will encounter later.

Nyquist continued to study the problems of telegraphy, and in
1928 he published a second important paper, o'Certain Topics in
Telegraph Tiansmission Theory." In this he demonstrated a num-
ber of very important points. He showed that if one sends some
numb er 2N of different current values per second, all the sinusoidal
components of the signal with frequencies greater than N are
redundant, in the sense that they are not needed in deducitg from
the received signal the succession of current values which were sent.
If all of therJ ttigher frequencies were removed, one could still
deduce by studying the signal which current values had been
transmitted. Further, he showed how a signal could be constructed
which would contain no frequencies above N cps and from which
it would be very easy to deduce at the receivitg point what current
values had been sent. This second paper was more quantitative and
exact than the first; together, they embrace much important mate-
rial that is now embodied in communication theory.

R. V. L. Hartley, the inventor of the Hartley oscillator, was
thinking philosophically about the transmission of information at
about this time, and he summ anzed his reflections in a paper,
"Tiansmission of Informationo" which he published in 1928.

Hartley had an interestin E way of formulating the problem of
communication, one of those ways of putting things which may
seem obvious when stated but which can wait years for the insight
that enables someone to make the statement. He regarded the
sender of a message as equipped with a set of symbols (the letters
of the alphabet for instance) from which he mentally selects symbol
after symbol, thus generating a sequence of symbols. He observed
that a chance event, such as the rolling of balls into pockets, -ight
equally well generate such a sequence. He then defined H, the
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information of the message, as the logarithm of the number of
possible sequences of symbols which might have been selected and
showed that

H - n l o g s

Here n is the number of symbols selected, and s is the number of
different symbols in the set from which symbols are selected.

This is acceptable in the light of our present knowledge of
information theory only if successive symbols are chosen independ-
ently and if any of the r symbols is equally likely to be selected.
In this case, we need merely note, as before, that the logarithm of
r, the number of symbols, is the number of independent 0-or-l
choices that can be represented or sent simultaneously, and it is
reasonable that the rate of transmission of information should be
the rate of sending symbols per second n, times the number of
independent 0-or- I choices that can be conveyed per symbol.

Hartley goes on to the problem of encoding the primary symbols
(letters of the alphabet, for instance) in terms of secondary symbols
(e.9., the sequences of dots, spaces, and dashes of the Morse code).
He observes that restrictions on the selection of symbols (the fact
that E is selected more often than Z) should govern the lengths of
the second ary symbols (Morse code representations) if we are to
transmit messages most swiftly. As we have seen, Morse himself
understood this, but Hartley stated the matter in a way which
encouraged mathematical attack and inspired further work. Hart-
l.y also suggested a way of applying such considerations to con-
tinuous signals, such as telephone signals or picture signals.

Finally, Hartley stated, in accord with Nyquist, that the amount
of information which can be transmitteO 

-ii 
proportional to the

band width times the time of transmission. But this makes us
wonder about the number of allowable current values, which is also
important to speed of transmission. How are we to enumerate
them?

After the work of Nyquist and Hartle), communication theory
apPears to have taken a prolonged and iomfortable rest. Workers
busily built and studied particular communication systems. The
art grew very complicated indeed during World War Ii. Much new
understanding of particular new communication systems and
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devices was achieved, but no broad philosophical principles were
laid down.

During the war it became important to predict from inaccurate
or "noisy" radar data the courses of airplanes, so that the planes
could be shot down. This raised an important question: Suppose
that one has a varying electric current which represents data con-
cerning the present position of an airplane but that there is added
to it a second meaningless erratic current, that is, a noise. It may
be that the frequencies most strongly present in the signal are
different from the frequencies most strongly present in the noise.
If this is so, it would seem desirable to pass the signal with the noise
added through an electrical circuit or filter which attenuates the
frequencies strongly present in the noise but does not attenu ate
very much the frequencies strongly present in the signal. Then, the
resulting electric current can be passed through other circuits in
an effort to estimate or predict what the value of the original signal,
without noise, will be a few seconds from the present. But what
sort of combination of electrical circuits will enable one best to
predict from the present noisy signal the value of the true signal
a few seconds in the future?

In essence, the problem is one in which we deal with not one but
with a whole ensemble of possible signals (courses of the plane),
so that we do not know in advance which signal we are dealing
with. Further, we are troubled with an unpredictable noise.

This problem was solved in Russia by A. N. Kolmogoroff. In this
country it was solved independently by Norbert Wiener. Wiener
is a mathematician whose background ideally fitted him to deal
with this sort of problem, and during the war he produced a
yellow-bound document, affectionately called "the yellow peril'o
(because of the headaches it caused), in which he solved the diffi-
cult problem.

During and after the war another mathematici &n, Claude E.
Shannrn, interested himself in the general problem of communica-
tion. Shannon began by considering the relative advantages of
many new and fanciful communication systems, and he sought
some basic method of comparing their merits. In the same year
(1948) that Wiener published his book, Cybernetics, which deals
with communication and control, Shannon published in two parts
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a paper which is regarded as the foundation of modern communi-
cation theory.

Wiener and Shannon alike consider, not the problem of a single
signal, but the problem of dealing adequately with any signal
selected from a group or ensemble of possible signals. There was
a free interchange among various workers before the publication
of either Wiener's book or Shannon's paper, and similar ideas and
expressions appear in both, although Shannon's inteqpretation
appears to be unique.

Chiefly, Wiener's name has come to be associated with the field
of extracting signals of a given ensemble from noise of a known
type. An example of this has been given above. The enemy pilot
follows a course which he choses, and our radar adds noise of
natural origin to the signals which represent the position of the
plane. We have a set of possible signals (possible courses of the
airplane), not of our own choosin5, mixed with noise, not of our
own choosing, and we try to make the best estimate of the present
or future value of the signal (the present or future position of the
airplane) despite the noise.

Shannon's name has come to be associated with matters of so
encodirg messages chosen from a known ensemble that they can
be transmitted accurately and swiftly in the presence of noise. As
an example, we may have as a message source English text, not
of our own choositrB, and an electrical circuit, s€rl, a noisy telegraph
cable, not of our own choosing. But in the problem treated by
Shannoil, we are allowed to choose how we shall represent the
message as an electrical signal-how many current values we shall
allow, for instance, and how many we shall transmit per second.
The problem, then, is not how to treat a signal plus noise so as to
get a best estimate of the signal, but what sort of signal to send
so as best to convey messages of a given type over a particular sort
of noisy circuit.

This matter of efficient encodirg and its consequences form the
chief substance of information theory. In that an ensemble of
messages is considered, the work reflects the spirit of the work of
Kolmogoroff and Wiener and of the work of Morse and Hartley
as well.

It would be useless to review here the content of Shannon's
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work, for that is what this book is about. We shall see, however,
that it sheds further light on all the problems raised by Nyquist
and Hartley and goes far beyond those problems.

In looking back on the origins of communication theory, two
other names should perhaps be mentioned. In 1946, Dennis Gabor
published an ingenious paper, "Theory of Communication." This,
suggestive as it is, missed the inclusion of noise, which is at the
heart of modern communication theory. Further, in 1949,'W. G.
Tuller published an interesting paper, "Theoretical Limits on the
Rate of Transmission of Informatiofr," which in part parallels
Shannon's work.

The gist of this chapter has been that the very general theory of
communication which Shannon has given us grew out of the study
of particular problems of electrical communication. Morse was
faced with the problem of representing the letters of the alphabet
by short or long pulses of current with intervening spaces of no
current-that is, by the dots, dashes, and spaces of telegraphy. He
wisely chose to represent common letters by short combinations
of dots and dashes and uncommon letters by long combinations;
this was a first step in efficient encoding of messages, a vital part
of communication theory.

Ingenious inventors who followed Morse made use of different
intensities and directions of current flow in order to give the sender
a greater choice of signals than merely off-or-on. This made it
possible to send more letters per unit time, but it made the signal
more susceptible to disturbance by unwanted electrical disturb-
ances called noise as well as by inability of circuits to transmit
accurately rapid changes of current.

An evaluation of the relative advantages of many different sorts
of telegraph signals was desirable. Mathematical tools were needed
for such a study. One of the most important of these is Fourier
analysis, which makes it possible to represent any signal as a sum
of sine waves of various frequencies.

Most communication circuits are linear. This means that several
signals present in the circuit do not interact or interfere. It can be
shown that while even linear circuits change the shape of most
signals, the effect of a linear circuit on a sine wave is merely to
make it weaker and to delay its time of arrival. Hence, when a
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complicated signal is represented as a sum of sine waves of various
frequencies, it is easy to calculate the effect of a linear circuit on
each sinusoidal component separately and then to add up the
weakened or attenuated sinusoidal components in order to obtain
the over-all received signal.

Nyquist showed that the number of distinct, different current
values which can be sent over a circuit per second is twice the total
range or band width of frequencies used. Thus, the rate at which
letters of text can be transmitted is proportional to band width.
Nyquist and Hartley also showed that the rate at which letters of
text can be transmitted is proportional to the logarithm of the
number of current values used.

A complete theory of communication required other mathe-
matical tools and new ideas. These are related to work done by
Kolmogoroff and Wiener, who considered the problem of an
unknown signal of a given type disturbed by the addition of noise.
How does one best estimate what the signal is despite the presence
of the interferirg noise? Kolmogoroff and Wiener solved this
problem.

The problem Shannon set himself is somewhat different. Suppose
we have a message source which produces messages of a given type,
such as English text. Suppose we have a noisy communication
channel of specified characteristics. How can we represent or
encode messages from the message source by means of electrical
signals so as to attain the fastest possible transmission over the
noisy channel? Indeed, how fast can we transmit a given type of
message over a given channel without error? In a rough and general
wa/, this is the problem that Shannon set himself and solved.



CHAPTER III A Mathematical
Model

A uernEMArICAL rHEoRy which seeks to explain and to predict
the events in the world about us always deals with a simplified
model of the world, a mathematical model in which only things
pertinent to the behavior under consideration enter.

Thus, planets are composed of various substances, solid, liquid,
and gaseous, at various pressures and temperatures. The parts of
their substances exposed to the rays of the sun reflect various
fractions of the different colors of the light which falls upon them,
so that when we observe planets we see on them various colored
features. However, the mathematical astronomer in predicting the
orbit of a planet about the sun need take into account only the total
mass of the sun, the distance of the planet from the sun, and the
speed and direction of the planet's motion at some initial instant.
For a more refined calculation, the astronomer must also take into
account the total mass of the planet and the motions and masses
of other planets which exert gravitational forces on it.

This does not mean that astronomers are not concerned with
other aspects of planets, and of stars and nebulae as well. The
important point is that they need not take these other matters into
consideration in computing planet ary orbits. The great beauty and
power of a mathematical theory or model lies in the separation of
the relevant from the irrelevant. so that certain observable behavior

45
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can be related and understood without the need of comprehending
the whole nature and behavior of the universe.

Mathematical models can have various degrees of accuracy or
applicability. Thus, we can accurately predict the orbits of planets
by regarding them as rigid bodies, despite the fact that no truly
rigid body exists. On the other hand, the long-term motions of our
moon can only be understood by taking into account the motion
of the waters over the face of the earth, that is, the tides. Thus, in
dealing very precisely with lunar motion we cannot regard the
earth as a rigid body.

In a similar wa/, in network theory we study the electrical
properties of interconnections of ideal inductors, capacitors, and
resistors, which are assigned certain simple mathematical proper-
ties. The components of which the actual useful circuits in radio,
TV, and telephone equipment are made only approximate the
properties of the ideal inductors, capacitors, and resistors of net-
work theory. Sometimes, the difference is trivial and can be disre-
garded. Sometimes it must be taken into account by more refined
calculations.

Of course, a mathematical model may be a very crude or even
an invalid representation of events in the real world. Thus, the
self-interested, gain-motivated "economic man" of early economic
theory has fallen into disfavor because the behavior of the eco-
nomic man does not appear to correspond to or to usefully explain
the actual behavior of our economic world and of the people in it.

In the orbits of the planets and the behavior of networks, we
have examples of rdeahzed determinislic systems which have the
sort of predictable behavior we ordinarily expect of machines.
Astronomers can compute the positions which the planets will
occupy millennia in the future. Network theory tells us all the
subsequent behavior of an electrical network when it is excited by
a particular electrical signal.

Even the individual economic man is deterministic, for he will
always act for his economic gain. But, if he at some time gambles
on the honest throw of a die because the odds favor him, his
economic fate becomes to a degree unpredictable, for he may lose
even though the odds do favor him.

We can, however, make a mathematical model for purely chance
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events, such as the drawing of some number, say three, of white
or black balls from a container holding equal numbers of white
and black balls. This model tells us, in fact, that after many trials
we will have drawn all white about r/s of the time, two whites and
a black about3/a of the time, two blacks and a white about3/s of
the time, and all black abovt r/s of the time. It can also tell us how
much of a deviation from these proportions we may reasonably
expect after a given number of trials.

Our experience indicates that the behavior of actual human
beings is neither as determined as that of the economic man nor
as simply random as the throw of a die or as the drawing of balls
from a mixture of black and white balls. It is clear, however, that
a deterministic model will not get us far in the consideration of
human behavior, such as human communication, while a random
or statistical model might.

Wb all know that the actuarial tables used by insurance com-
panies make falr predictions of the fraction of alarge group ofmen
in a given age group who will die in one year, despite the fact that
we cannot predict when a particular man will die. Thus a statistical
model may enable us to understand and even to make some sort
of predictions concerning human behavior, even as we can predict
how often, on the average, we will draw three black balls by chance
tiom an equal mixture of white and black balls.

It might be objected that actuarial tables make predictions con-
cerning groups of people, not predictions concerning individuals.
However, experience teaches us that we can make predictions
concerning the behavior of individual human beings as well as of
groups of individuals. For instance, in countirg the frequency of
usage of the letter E in all English prose we will find that E con-
stitutes about 0.13 of all the letters appearing, while W, for instance,
constitutes only about 0.02 of all letters appearing. But, we also
find almost the same proportions of E's and W's in the prose
written by any one person. Thus, we can predict with some confi-
dence that if you, or I, or Joe Doakes, or anyone else writes a long
letter, or an articleo or a book, about 0.13 of the letters he uses will
be E's.

This predictability of behavior limits our freedom no more than
does any other habit. We don't have to use in our writing the same
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fraction of E's, or of any other letter, that everyone else does. In
fact, several untrammeled individuals have broken away from the
common pattern. William F. Friedman, the eminent cryptanalyst
and author of The Shakesperian Cipher Examined, has supplied
me with the followitg examples.

Gottlob Burmann, a German poet who lived from 1737 to 1805,
wrote 130 poems, including a total of 20,000 words, without once
using the letter R. Further, during the last seventeen years of his
life, Burmann even omitted the letter from his daily conversation.

In each of five stories published by Alonso Alcala y Herrera in
Lisbon in I 641 a different vowel was suppressed. Francisco Navar-
rete y Ribera (1659), Fernando Jacinto de Zurrta y Haro (1654),
and Manuel Lorenzo de Lrzarazv y Berbvizana (1654) provided
other examples.

In 1939, Ernest Vincent Wright published a 267-page novel,
Gadsby, in which no use is made of the letter E. I quote aparugraph
below:

Upon this basis I am going to show you how a bunch of bright young
folks did find a champion; a man with boys and girls of his own; a man

of so dominating and huppy individuality that Youth is drawn to him as

is a fly to a sugar bowl. It is a story about a small town. It is not a gossipy

yarn; nor is it a dry, monotonous account, full of such customary "fiIl-ins'o

as o'romantic moonlight casting murky shadows down a long, winding

country road." Nor will it say anything about tinklings lulling distant

folds; robins carolling at twilight, nor any'owarm glow of lamplight" from

a cabin window. No. It is an account of up-and-doing activity; a vivid

portrayal of Youth as it is today; and a practical discarding of that worn-

out notion that "a child don't know anything."

While such exercises of free will show that it is not impossible
to break the chains of habit, we ordinarily write in a more conven-
tional manner. When we are not going out of our way to demon-
strate that we can do otherwise, we customarily use our due
fraction of 0.13 E's with almost the consistency of a machine or a
mathematical rule.

We cannot argue from this to the converse idea that a machine
into which the same habits were built could write English text.
However, Shannon has demonstrated how English words and text
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can be approximated by u mathematical process which could be
carried out by u machine.

Suppose, for instance, that we merely produce a sequence of
letters and spaces with equal probabilities. We might do this by
putting equal numbers of cards marked with each letter and with

th. space into a hat, mixing them up, drawin E a card, recordirg
its symbol, returnitg it, remixing, drawing another card, and so
on. This gives what Shannon calls the zero-order approximation
to English text. His example, obtained by an equivalent process,
goes:

l. Zero-order approximation (symbols independent and equi-
probable)

XFOML RXKHRJFFJUJ ZLPVVCFWKCYI FFJEYVKCQSGI{YD

QPAAMKBZAACTBZLHJQD.

Here there are far too many Zs and Ws, and not nearly enough
E's and spaces. We can approach more nearly to English text 6y
choosing letters independently of one another, but choosing E
more often than W or Z. We could do this by putting many E's
and few W's and Z's into the hat, mixing, and drawing out the
letters. As the probability that a given letter is an E should be .13,
out of every hundred letters we put into the hat, 13 should be E's.
As the probability that a letter will be W should be .02, out of each
hundred letters we put into the hat, 2 should be W's, and so on.
Here is the result of an equivalent procedure, which gives what
Shannon calls a first-order approximation of English text:

2. First-order approximation (symbols independent but with
frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH

EEI ALHENHTTPA OOBTTVA NAH BRL

In English text we almost never encounter any pair of letters
beginnitg with Q except QU. The probability of encounterirg QX
ot QZ is essentially zero. White the probability of QU is not 0, it is
so small as not to be listed in the tables I consulted. On the other
hand, the probability of TH is .037, the probability of OR is .010
and the probability of WE is .006. These probabilities have the
followitg meaning. In a stretch of text containing, say, 10,001
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letters, there are 10,000 successive pairs of letters, i.e., the first and
second, the second and third, and so on to the next to last and the
last. Of the pairs a certain number are the letters TH. This might
be 370 pairs. If we divide the total number of times we find TH,
which we have assumed to be 370 times, by the total number of
pairs of letters, which we have assumed to be 10,000, we getthe
probability that a randomly selected pair of letters in the text will
be TH, that is, 370/ 10,000, or .03'l .

Diligent cryptanalysts have made tables of such digram prob-
abilities for English text. To see how we might use these in con-
structirg sequences of letters with the same digram probabilities
as English text, let us assume that we use 27 hats, 26 for digrams
beginning with each of the letters and one for digrams beginning
with a space. We will then put a large number of digrarns into the
hats accordirg to the probabilities of the digrams- Out of 1,000
digrams we would put tn 37 TH's, l0 WE's, and so on.

Let us consider fbr a moment the meaning of these hats futl of
digrams in terms of the original counts which led to the evaluations
of digram probabilities.

In going through the text letter by letter we will encounter every
T in the text. Thus, the number of digrams beginning with T, all
of which we put in one hat, will be the same as the number of T's.
The fraction these represent of the total number of digrams counted
is the probability of encountering T in the text; that is, .10. We
might call this probabilityp(T)

PG) -  ' lo

We may note that this is also the fraction of digrams, distributed
among the hats, which end in T as well as the fraction that begin
with T.

Again, basing our total numbers on I,001 letters of text, or
1,000 digrams, the number of times the digram TH is encountered
is 37, and so the probability of encountering the digram TH, which
we might call/(T, H) is

p(T, H) - .037

Now we see that 0.10, or 100, of the digrams will begin with T
and hence will be in the T hat and of these 37 will be TH. Thuso
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the fraction of the T digrams which are TH will be 37 / I00, or 0.37.
Correspondingly, we say that the probability that a digram b.g*-
ning with T is TH, which we might callpr(H), is

Pt(H) = .37

This is called the conditional probability that the letter following a
T will be an H.

One can use these probabilities, which are adequately repre-
sented by the numbers of various digrams in the various hats, in
the construction of text which has both the same letter frequencies
and digram frequencies as does English text. To do this one draws
the first digram at random from any hat and writes down its letters.
He then draws a second digram from the hat indicated by the
second letter of the first digram and writes down the second letter
of this second digram. Then he draws a third digram from the hat
indicated by the second letter of the second digram and writes
down the second letter of this third digram , and so on. The space
is treated just like a letter. There is a particular probability that a
space will follow a particular letter (ending a "word") and a
particular probability that a particular letter will follow a space
(starting a new "word").

By an equivalent process, Shannon constructed what he calls a
second-order approximation to English; it is:

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S

DEAMY ACHIN D ILONASIVE TUCOOWE AT TEASONARE

FUSO TIZIN ANDY TOBE SEACE CTISBE

Cryptanalysts have even produced tables giving the probabilities
of groups of three letters, called trigram probabilities. These can
be used to construct what Shannon calls a third-order approxima-
tion to English. His example goes:

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS

GROCID PONDENOME OF DEMONSTURES OF THE

REPTAGIN IS REGOACTIONA OF CRE

When we examine Shannon's examples I through 4 we see an
increasing resemblance to English text. Example l, the zero-order
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approximatior, has no wordlike combinations. In example 2, which
takes letter frequencies into account, ocRo and NAH somewhat
resemble English words. In example 3, which takes digram frequen-
cies into account, all the 'owords" are pronounceable, and oN, ARE,
BE, AT, and ANDv occur in English. In example 4, which takes
trigram frequencies into account, we have eight English words and
many English-sounding words, such as cRocID, PoNDENoME, and
DEMONSTURES.

G. T. Guilbaud has carried out a similar process using the
statistics of Latin and has so produced a third-order approximation
(one taking into account trigram frequencies) resembling Latin,
which I quote below:

IBUS CENT IPITIA VETIS IPSE CUM VIVIVS

SE ACETITI DEDENTUR

The underlined words are genuine Latin words.
It is clear from such examples that by giving a machine certain

statistics of a language, the probabilities of finditg a particular
letter or group of l, or 2, or 3, or n letters, and by giving the
machine an ability equivalent to picking a ball from ahat, flipping
a coin, or choosirg a random number, we could make the machine
produ ce a close approximation to English text or to text in some
other language. The more complete information we gave the
machire, the more closely would its product resemble English or
other text, both in its statistical structure and to the human eye.

If we allow the machine to choose groups of three letters on the
basis of their probability, then any three-letter combination which
it produces must be an English word or a pafi of an English word
and any two letter "word" must be an English word. The machine
is, however, less inhibited than a person, who ordinarily writes
down only sequences of letters which do spell words. Thus, he
misses ever writing down pompous PoNDENoME, suspect ILONASTVE,
somewhat vulgar cRocrD, learned DEMoNSTURES, and wacky but
delightful DEAMv. Of course, a man in principle could wnte down
such combinations of letters but ordinarily he doesn't.

We could cure the machine of this ability to produce un-English
words by making it choose among groups of letters as long as the
longest English word. But, it would be much simpler merely to
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supply the machine with words rather than letters and to let it
produce these words according to certain probabilities.

Shannon has given an example in which words were selected
independently, but with the probabilities of their occurring in
English text, so that the, and, mary etc., occur in the same propor-
tion as in English. This could be achieved by cutting text into
words, scrambling the words in a hat, and then drawing out a
succession of words. He calls this a first-order word approximation.
It runs as follows:

5. First-order word approximation. Here words are chosen inde-
pendently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT

OR COME CANI DIFFERENT NATURAL HERE HE TI{E

A IN CAME THE TO OF TO EXPERT GRAY COME

TO FURNISHES THE LINE MESSAGE HAD BE THESE

There are no tables which give the probability of different pairs
of words. However, Shannon constructed a random passage in
which the probabilities of pairs of words were the same as in
English text by the followirg expedient. He chose a first pair of
words at random in a novel. He then looked through the novel for
the next occurrence of the second word of the first pair and added
the word which followed it in this new occurrence, and so on.

This process gave him the followirg second-order word approxi-
mation to English.

6. Second-order word approximation. The word transition prob-
abilities are correct, but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN

ENGLISH WRITER THAT THE CHARACTER OF TI{IS

POINT IS THEREFORE ANOTHER METHOD FOR THE

LETTERS TI{AT THE TIME OF WHO EVER TOLD TIIE

PROBLEM FOR AN LTNEXPECTED.

We see that there are stretches of several words in this final
passage which resemble and, indeed, might occur in English text.

Let us consider what we have found. In actual English text, in
that text which we send by teletypewriter, for instance, particular
letters occur with very nearly constant frequencies. Pairs of letters
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and triplets and quadruplets of letters occur with almost constant
frequencies over long stretches of the text. Words and pairs of
words occur with almost constant frequencies. Further, we can by
means of a random mathematical process, carried out by u machine
if you like, produce sequences of English words or letters exhibiting
these same statistics.

Such a scheme, even if refined greatly, would not, however,
produce all sequences of words that a person might utter. Carried
to an extreme, it would be confined to combinations of words
which had occurred; otherwise, there would be no statistical data
avarlable on them. Yet I may sal, "The magenta typhoon whirled
the farded bishop aw&/," and this may well never have been said
before.

The real rules of English text deal not with letters or words alone
but with classes of words and their rules of association, that is, with
grammar. Linguists and engineers who try to make machines for
translating one language into another must find these rules, so that
their machines can combine words to form grammatical utterances
even when these exact combinations have not occurred before
(and also so that the meaning of words in the text to be translated
can be deduced from the context). This is a big problem. It is easy,
however, to describe a 'omachine" which randomly produces end-
less, grammatical utterances of a limited sort.

Figure III-I is a diagram of such a "machine." Each numbered
box represents a state of the machine. Because there is only a finite
number of boxes or states, this is called a finite-state machine.

From each box a number of arrows go to other boxes. In this
particular machioe, only two arrows go from each box to each of
two other boxes. Also, in this case, each arrow is labeled /2. This
indicates that the probability of the machine passing from, for
instance, state 2 to state 3 is Vz and the probability of the machine
passing from state 2 to state 4 is Vz.

To make the machine run, we need a sequence of random
choices, which we can obtain by flipping a coin repeatedly. We can
let heads (H) mean follow the top aruow and tails (n, follow the
bottom arrow. This will tell us to pass to a new state. When we do
this we print out the word, words, or symbol written in that state
box and flip again to get a new state.
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As an example, if we started in stateT and flipped the following
sequence of heads and tails: T H H H T T H T T T H H H
H, the "machine would print out"

THE COMMUMST PARTY IIWESTIGATED THE CONGRESS.

THE COMMUMST PARTY PURGED THE CONGRESS ANID

DESTROITD TIIE COMMUNIST PARTY AI{D FOIIND

EVIDENCE OF TIIE CONGRESS.

This can go on and or, never retracing its whole course and
producing "sentences" of unlimited length.

Random choice according to a table of probabilities of sequences
of symbols (letters and space) or words can produce material
resembtittg English text. A finite-state machine with a random
choice among allowed transitions from state to state can produce
material resembling English text. Either process is called a stochas-
tic ptocess, because of the random element involved in it.

We have examined a number of properties of English text. We
have seen that the avera1e frequency of E's is commonly constant
for both the English text produced by one writer and, also, for the
text produced by all writers. Other more complicated statistics,
such as the frequency of digrams (TH, WE, and other letter pairs),
are also essentially constant. Further, we have shown that English-
like text can be produced by u sequence of random choices, such
as drawings of slips of paper from hats, or flips of a coin, if the
proper probabilities are in some way built into the process. One
way of producing such text is through the use of a finite-state
machine, such as that of Figure III- l.

We have been seeking a mathematical model of a source of
English text. Such a model should be capable of producing text
which corresponds closely to actual English text, closely enough
so that the problem of encodittg and transmitting such text is
essentially equivalent to the problem of encoditg and transmitting
actual English text. The mathematical properties of the model must
be mathematically defined so that useful theorems can be proved
concerning the encodirg and transmission of the text is produces,
theorems which are applicable to a high degree of approximation
to the encoding of actual English text. It would, however, be asking
too much to insist that the production of actual English text con-
form with mathematical exactitude to the operation of the model.
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The mathematical model which Shannon adopted to represent
the production of text (and of spoken and visual messages as well)
is the ergodic source. To understand what an ergodic source is, we
must first understand what a stationary source Ls, and to explain
this is our next order of business.

The general idea of a station ary source is well conveyed by the
name. Imagine, for instance, a process, i.e. , &nimaginary machine,
that produces forever after it is started the sequences of characters

A E A E A E A E A E , e t c .

Clearly, what comes later is like what has gone before, and
stationary seems an apt designation of such a source of characters.
We might contrast this with a source of characters which, after
starting, produced

A E A A E E A A A E E E,e tc .

Here the strings of A's and E's get longer and longer without end'
certainly this is not a stationary source.

Similarly, u sequence of characters chosen atrandom with some
assigned probabilities (the first-order letter approximation of ex-
ample I above) constitutes a station ary source and so do the
digram and trigram sources of examples 2 and 3. The general idea
of a stationary source is clear enough. An adequate mathematical
definition is a little more difficult.

The idea of stationarity of a source demands no change with
time. Yet, consider a digram source, in which the probability of
the second character depends on what the previous character is.
If we start such a source out on the letter A, several different
letters can follow, while if we start such a source out on the letter
Q, the second letter must be LJ. In general, the manner of starting
the source will influence the statistics of the sequence of characters
produced, at least for some distance from the start.

To get around this, the mathematician says, let us not consider
just one sequence of characters produced by the source. After all,
our source is an imaginary machine, and we can quite well imagine
thatit has been started an infinite number of times, so as to produce
an infinite number of sequences of characters. Such an infinite
number of sequences is called an ensemble of sequenc€s.

These sequences could be started in any specified manner. Thus
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in the case of a digram source, we can if we wish start a fraction,

0. 13, of the sequences with E (this is just the probability of E in
English text), ; fraction, 0.02, with W (the probability of W), and

so on. If we do this, we will find that the fraction of E's is the same,

averagirg over all the first letters of the ensemble of sequences, as

it is averaging over all the second letters of the ensemble, as it is

avera1irg over all the third letters of the ensemble, and so on. No

mattei what position from the beginnirg we choose, the fraction

of E's or of any other letter occurring in that position, taken over

all the sequences in the ensemble, is the same. This independence
with respect to position will be true also for the probability with

which TH or WE occurs among the first, second, third, and sub-
sequent pairs of letters in the sequences of the ensemble.

ttris ii what we mean by stationarity. If we can find a way of

assignirg probabilities to the various startittg conditions used in

formingltie ensemble of sequences of characters which we allow

the source to produce, probabilities such that any statistic obtained
by averaging over the ensemble doesn't depend on the distance

from theitart at which we take an average, then the source is said

to be station ary.This may seem difficult or obscure to the reader,
but the difficulty arises in giving a useful and exact mathematical
form to an idea which would otherwise be mathematically useless.

In the argument above we have, in discussing the infinite en-

semble of sequences produced by u source, considered averaging
over-all first characters or over-all second or third characters (or

pairs, or triples of characters, as other examples). Such an average
is called an ensemble average.It is different from a sort of averuge
we talked about earlier in this chapter, in which we lumped

together all the characters rn one sequence and took the average
over them. Such an average is called a time average.

The time average and the ensemble average can be different.
For instance, consider a source which starts a third of the time with

A and produces alternately A and B, & third of the time with B and

products alternately B and A, and a third of the time with E and

produces a string of E's. The possible sequences are

l .  A  B A B A B A B,e tc .
2.  B A B A B A B A,etc .
3.  E E E E E E E E,etc .
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this is a stationary source, /et we have the
in Table V.

Tnnrs V

Probability Time Average
of Sequence (I)

Time Average Time Average Ensemble
Sequence (2) Sequence (3) Average

Vt
Yt
YJ

0
0
I

Y2
r/2

0

V2
V2
0

A
B
E

When a source is station ary, and when every possible ensemble
average (of letters, digraffis, trigrams, etc.) is equal to the corre-
sponditg time average, the source is said to be ergodic. The
theorems of information theory which are discussed in subsequent
chapters apply to ergodic sources, and their proofs rest on the
assumption that the message source is ergodic.t

While we have here discussed discrete sources which produce
sequences of characters, information theory also deals with con-
tinuous sources, which generate smoothly varying signals, such as
the acoustic waves of speech or the fluctuating electric currents
which correspond to these in telephony. The sources of such signals
are also assumed to be ergodic.

Why is an ergodic message source an appropriate and profitable
mathematical model for study? For one thing, we see by examining
the definition of an ergodic source as given above that for an
ergodic source the statistics of a message, for instance, the fre-
quency of occurrence of a letter, such as E, or of a digram, such
as TH, do not vary along the length of the message. As we an alyze
a longer and longer stretch of a message, we get a better and better
estimate of the probabilities of occurrence of various letters and
letter groups. In other words, by examinin E a longer and longer
stretch of a message we are able to arrive at and refine a mathe-
matical description of the source.

Further, the probabilities, the description of the source arrived
at through such an examination of one message, apply equally
well to all messages generated by the source and not just to the

1 Some work has been done on the encoding of nonstationary sources, but it is
not discussed in this book.
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particular message examined. This is assured by the fact that the
time and ensemble avetages are the same.

Thus, an ergodic source is a particularly simple kind of prob-
abilistic or stochastic source of messages, and simple processes are
easier to deal with mathematically than are complicated processes.
However, simplicity in itself is not enough. The ergodic source
would not be of interest in communication theory if it were not
reasonably realistic as well as simple.

Communication theory has two sides. It has a mathematically
exact side, which deals rigorously with hypothetical, exactly ergodic
sources, sources which we can imagine to produce infinite en-
sembles of infinite sequences of symbols. Mathematically, we ate
free to investigate rigorously either such a source itself or the
infinite ensemble of messages which it can produce.

We use the theorems of communication theory in connection
with the transmission of actual English text. A human being is not
a hypotheti cal, mathematically defined machine. He cannot pro-
duce even one infinite sequence of characters, let alone an infinite
ensemble of sequences.

A man does, however, produce many long sequences of charac-
ters, and all the writers of English together collectively produce a
great many such long sequences of characters. In fact, pafi of this
huge output of very long sequences of characters constitutes the
messages actually sent by teletypewriter.

We wilI, thus, think of all the different Americans who write out
telegrams in English as being, approximately at least, an ergodic
source of telegraph messages and of all Americans speaking over
telephones as bein1, approximately at least, an ergodic source of
telephone signals. Clearly, however, all men writitg French plus
all men writirg English could not constitute an ergodic source. The
output of each would have certain time-average probabilities for
letters, digraffis, trigrams, words, and so or, but the probabilities
for the English text would be different from the probabilities for
the French text, and the ensemble avera1e would resemble neither.

We will not assert that all writers of English (and all speakers
of English) constitute a strictly ergodic message source. The statis-
tics of the English we produce change somewhat as we change
subject or pu{pose, and different people write somewhat differently.
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Too, in producing telephone signals by speakitrB, some people
speak softly, some bellow, and some bellow only when they are
angry. What we do assert is that we find a remarkable uniformity
in many statistics of messages, as in the case of the probability of
E for different samples of English text. Speech and writing as
ergodic sources are not quite true to the real world, but they are
far truer than is the economic man. They are true enough to be
useful.

This difference between the exactly ergodic source of the mathe-
matical theory of communication and the approximately ergodic
message sources of the real world should be kept in mind. We must
exercise a reasonable caution in applying the conclusions of the
mathematical theory of communication to actual problems. We are
used to this in other fields. For instance, mathematics tells us that
we can deduce the diameter of a circle from the coordinates or
locations of any three points on the circle, and this is true for
absolutely exact coordinates. Yet no sensible man would try to
determine the diameter of a somewhat fuzzy real circle drawn on
a sheet of paper by tryitg to measure very exactly the positions of
three points a thousandth of an inch apart on its circumference.
Rather, he would draw a line through the center and measure the
diameter directly as the distance between diametrically opposite
points. This is just the sort of judgment and caution one must
always use in applying an exact mathematical theory to an inexact
practical case.

Whatever caution we invoke, the fact that we have used a ran-
dom, probabilistic, stochastic process as a model of man in his role
of a message source raises philosophical questions. Does this mean
that we imply that man acts at random? There is no such impli-
cation. Perhaps if we knew enough about a man, his environment,
and his history, we could always predict just what word he would
write or speak next.

In communication theory, however, we assume that our only
knowledge of the message source is obtained either from the
messages that the source produces or perhaps from some less-than-
complete study of man himself. On the basis of information so
obtained, we can derive certain statistical data which, &s we have
seen, help to narrow the probability as to what the next word or
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letter of a message will be. There remains an element of uncer-
tainty. For us who have incomplete knowledge of it, the message
source behaves a^r if certain choices were made at random, insofar
as we cannot predict what the choices will be. If we could predict
them, we should incorporate the knowledge which enables us to
make the predictions into our statistics of the source. If we had
more knowledge, however, we might see that the choices whichwe
cannot predict are not really random, in that they are (on the basis
of knowledge that we do not have) predictable.

We can see that the view we have taken of finite-state machines,
such as that of Figure III- 1, has been limited. Finite-state machines
can have inputs as well as outputs. 'fhe transition from a particular
state to one among several others need not be chosen randomly;
it could be determined or influenced by various inputs to the
machine. For instance, the operation of an electronic digital com-
puter, which is a finite-state machine, is determined by the program
and data fed to it by the programmer.

It is, in fact, natural to think that man may be a finite-state
machine, not only in his function as a mess age source which pro-
duces words, but in all his other behavior as well. We can think if
we like of all possible conditions and configurations of the cells of
the nervous system as constituting states (states of mind, perhaps).
We can think of one state passing to another, sometimes with the
production of a letter, word, sound, or a part thereof, and some-
times with the production of some other action or of some part of
an action. We can think of sight, hearing, touch, and other senses
as supplyitg inputs which determine or influence what state the
machine passes into next. If man is a finite-state machine, the
number of states must be fantastic and beyond any detailed mathe-
matical treatment. But, so are the configurations of the molecules
in a Bos, and yet we can explain much of the significant behavior
of a gas in terms of pressure and temperature merely.

Can we someday say valid, simple, and important things about
the working of the mind in producing writtea text and other things
as well? As we have seen, we can already predict a good deal
concerning the statistical nature of what a man will write down on
paper, unless he is deliberately trying to behave eccentrically, and,
even then, he cannot help conforming to habits of his own.

Such broad considerations are not, of course, the real purpose
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or meat of this chapter. We set out to find a mathematical model
adequate to represent some aspects of the human being in his role
as a source of messages and adequate to represent some aspects
of the messages he produces. Taking English text as an example,
we noted that the frequencies of occurrence of various letters are
remarkably constant, unless the writer deliberately avoids certain
letters. Likewise, frequencies of occurrence of particular pairs,
triplets, and so or, of letters are very nearly constant, as are
frequencies of various words.

We also saw that we could generate sequences of letters with
frequencies corresponding to those of English text by various ran-
dom or stochastic processes, such as, cutting a lot of text into letters
(or words), scrambling the bits of paper in ahat, and drawing them
out one at a time. More elaborate stochastic processes, includirg
finite-state machines, can produce an even closer approximation
to English text.

Thus, we take a genetaltzed stochastic process as a model of a
message source, such as, a source producing English text. But, how
must we mathematically define or limit the stochastic sources we
deal with so that we can prove theorems concerning the encodirg
of messages generated by the sources? Of course, we must choose
a definition consistent with the character of real English text.

The sort of stochastic source chosen as a model of actual message
sources is the ergodic source. An ergodic source can be regarded
as a hypothetical machine which produces an infinite number of
or ensemble of infinite sequences of characters. Roughly, the nature
or statistics of the sequences of characters or messages produced
by an ergodic source do not change with time; that is, the source
is stationary. Further, for an ergodic source the statistics based on
one message apply equally well to all messages that the source
generates.

The theorems of communication theory are proved exactly for
truly ergodic sources. A11 writers writing English text together
constitute an opproximately ergodic source of text. The mathe-
matical model-the truly ergodic source-is close enough to the
actual situation so that the mathematics we base on it is very
useful. But we must be wise and careful in applying the theorems
and results of communication theory, which are exact for a mathe-
matical ergodic source, to actual communication problems.



CHAPTER IV Encoding and
Binary Digits

A souRCE oF INFoRMATToN may be English text, a man speaking,
the sound of an orchestra, photographs, motion picture films, or
scenes at which a television camer a may be pointed. We have seen
that in information theory such sources are regarded as having the
properties of ergodic sources of letters, numbers, characters, or
electrical signals. A chief aim of information theory is to study how
such sequences of characters and such signals can be most effec-
tively encoded for transmission, commonly by electrical means.

Everyone has heard of codes and the encodirg of messages.
Romantic spies use secret codes. Edgar Allan Poe popularized
cryptography in The Gold Brg. The country is full of amateur
cryptanalysts who delight in trying to read encoded messages that
others have devised.

In this historical sense of cryptography or secret writing, codes
are used to conceal the content of an important message from these
for whom it is not intended. This may be done by substituting for
the words of the message other words which are listed in a code
book. Or, in a type of code called a cipher, letters or numbers may
be substituted for the letters in the message accordiog to some
previously agreed upon secret scheme.

The idea of encoding, of the accurate representation of one
thing by another, occurs in other contexts as well. Geneticists
believe that the whole plan for a human body is written out in the
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chromosomes of the germ cell. Some assert that the "text" consists
of an orderly linear arrangement of four different units, or "bases,"
in the DNA (desoxyribonucleic acid) forming the chromosome.
This text in turn produces an equivalent text in RNA (ribonucleic
acid), and by means of this RNA text proteins made up of
sequences of lwenty amino acids are syntheirzed. Some cryptana-
lytic effort has been spent in an effort to determine how the four-
character message of RNA is reencoded into the twenty-character
code of the protein.

Actually, geneticists have been led to such considerations by the
existence of information theory. The study of the transmission of
information has brought about a new general understanding of the
problems of encoding, an understanding which is important to any
sort of encoding, whether it be the encodirg of cryptography or the
encodirg of genetic information.

We have already noted in Chapter II that English text can be
encoded into the symbols of Morse code and represented by short
and long pulses of current separated by short and long spaces. This
is one simple form of encoding. From the point of view of infor-
mation theory, the electromagnetic waves which travel from an FM
transmitter to the receiver in your home are an encoding of the
music which is transmitted. The electric currents in telephone
circuits are an encoding of speech. And the sound waves of speech
are themselves an encoding of the motions of the vocal tract which
produce them.

Nature has specified the encodirg of the motions of the vocal
tract into the sounds of speech. The communication engineer,
however, can choose the form of encoding by means of which he
will represent the sounds of speech by electric currents, just as he
can choose the code of dots, dashes, and spaces by means of which
he represents the letters of English text in telegraphy. He wants to
perform this encoding well, not poorly. To do this he must have
some standard which distinguishes good encoding from bad encod-
ing, and he must have some insight into means for achievitg good
encodirg. We learned something of these matters in Chapter II.

It is the study of this probleffi, & study that might in itself seem
limited, which has provided through information theory new ideas
important to all encoding, whether cryptographic or genetic. These
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new ideas include a measure of amount of information, called
entropy, and a unit of measurement, called the bit.

I would like to believe that at this point the reader is clamotirg
to know the meaning of "amount of informationo' as measured in
bits, and if so I hope that this enthusiasm will caffy him over a
considerable amount of intervening material about the encoding
of messages.

It seems to me that one can't understand and appreciate the
solution to a problem unless he has sorne idea of what the problem
is. You can't explain music meaningfully to a man who has never
heard any. A story about your neighbor may be full of insight, but
it would be wasted on a Hottentot. I think it is only by considering
in some detail how a message can be encoded for transmission that
we can come to appreciate the need for and the meaning of a
measure of amount of information.

It is easiest to gain some understanding of the important prob-
lems of codirg by considering simple and concrete examples. Of
course, in doing this we want to learn something of broad value,
and here we may foresee a difficulty.

Some important messages consist of sequences of discrete char-
acters, such as the successive letters of English text or the successive
digits of the output of an electronic computer. We have seen,
however, that other messages seem inherently different.

Speech and music are variations with time of the pressure of air
at the ear. This pressure we can accurately represent in telephony
by the voltage of a signal traveling along a wire or by some other
quantity. Such a variation of a signal with time is illustrated tn a
of Figure IV- L Here we assume the signal to be a voltage which
varies with time, as shown by the wavy line.

Information theory would be of limited value if it were not
applicable to such continuous signals or messages as well as to
discrete messages, such as English text.

In dealing with continuous signals, information theory first
invokes a mathematical theorem called the sampling theorem,
which we will use but not prove. This theorem states that a con-
tinuous signal can be represented completely by and reconstructed
perfectly fronr a set of measurements or samples of its amplitude
which are macie at equally spaced times. The interval between such
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Fig. IV-l

samples must be equal to or less than one-half of the period of the
highest frequency present in the signal. A set of such measurements
or samples of the amplitude of the signal 4 Figure IV- l, is repre-
sented by a sequence of vertical lines of various heights rn b of
Figure IV- l.

We should particularly note that for such samples of the signal
to represent a signal perfectly they must be taken frequently
enough. For a voice signal including frequencies from 0 to 4,000
cycles per second we must use 8,000 samples per second. For a
television signal includirg frequencies from 0 to 4 million cycles
per second we must use 8 million samples per second. In general,
if the frequency range of the signal it "f cycles per second we must
use at least 2f samples per second in order to describe it perfectly.

Thus, the sampling theorem enables us to represent a smoothly
varying signal by a sequence of samples which have different
amplitudes one from another. This sequence of samples is, how-
ever, still inherently different from a sequence of letters or digits.
There are only ten digits and there are only twenty-six letters, but
a sample can have any of an infinite number of amplitudes. The
amplitude of a sample can lie anywhere in a continuous range of
values, while a character or a digit has only a limited number of
discrete values.

The manner in which information theory copes with samples
having a continuous range of amplitudes is a topic all in itselfl, to
which we will return later. Here we will merely note that a signal
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need not be described or reproduced perfectly. Indeed, with real
physical apparatus a sign aI cannot be reproduced perfectly. In the
transmission of speech, for instance, it is sufficient to represent the
amplitude of a sample to an accuracy of about I per cent. 1lhus,
we can, if we wish, restrict ourselves to the numbers 0 to 99 in
describitg the amplitudes of successive speech samples and repre-
sent the amplitude of a given sample by that one of these hundred
integers which is closest to the actual amplitude. By so quantizing
the signal samples, we achiev e a representation comparable to the
discrete case of English text.

We can, then, by sampling and quantizing, convert the problem
of coditg a continuous signal, such as speech, into the seemingly
simpler problem of codirg a sequence of discrete characters, such
as the letters of English text.

We noted in Chapter II that English text can be sent, letter by
letter, by means of the Morse code. In a similar manner, such
messages can be sent by teletypewriter. Pressin g a particular key
on the transmitting machine sends a particular sequence of elec-
trical pulses and spaces out on the circuit. When these pulses and
spaces reach the receivirg machine, they activate the corresponding
type bar, and the machine prints out the character that was trans-
mitted.

Patterns of pulses and spaces indeed form a particularly useful
and general way of describing or encoding messages. Although
Morse code and teletypewriter codes make use of pulses and spaces
of different lengths, it is possible to transmit messages by means
of a sequence of pulses and spaces of equal length, transmitted at
perfectly regular intervals. Figure IV-Z shows how the electric
current sent out on the line varies with time for two different
patterns, each six intervals long, of such equal pulses and spaces.
Sequence a is a pulse-space-space-pulse-space-pulse. Sequence b
is pulse-pulse-pulse-space-pulse-pulse.

The presence of a pulse or a space in a given interval specffies
one of two different possibilities. We could use any pair of symbols
to represent such patterns of pulses or spaces as those of Figure
lV-z: yes, no; *, -; l, 0. Thus we could represent patterna as
follows:
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pulse space space pulse space pulse

Yes No No Yes No Yes

69

+++
l 0 0 l 0 l

The representation by 1 or 0 is particularly convenient and
important. It can be used to relate patterns of pulses to numbers
expressed in the binary system of notation.

When we write 315 we mean

3 X 1 0 2 + l x l 0 1  + 5 X l
- 3 X 1 0 0 + l x l 0 + 5 X l
_  3 1 5

In this ordinary decimal system of representirg numbers we make
use o f  the  ten  d i f fe ren t  d ig i ts l  0 ,  1 ,  2 ,3 ,4 ,  5 ,6 ,7 ,8 ,  9 .  In  the
binary system we use only two digits, 0 and l. When we write I 0
0 l 0 l w e m e a n

I  X  2 5  + 0 X  2 4  + 0 X  2 3 +  I  X  2 2 +  0 X  2 +  I  X  I
=  I  X  3 2 + 0 x  1 6 + 0 X 8 +  I  X  4 + 0 X  2 +  I  X  I
= 37 tn decimal notation

It is often convenient to let zeros precede a number; this does
not change its value. Thus, in decimal notation we can sa),

0016 -  16

T I M E  F - t >

Fig. IV-2
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Or in binary notation

001010 _ 1010

In binary numbers, each 0 or I is a binary digit. To describe the
pulses or spaces occurrirg in six successive intervals, we can use
a sequence of six binary digits. As a pulse or space in one interval
is equivalent to a binary digit, we can also refer to a pulse group
of six binary digits, or we can refer to the pulse or space occurring
in one interval as one binary digit.

Let us consider how many patterns of pulses and spaces there
are which are three intervals long. In other words, how many
three-digit binary numbers are there? These are all shown in
Table VI.

Tlnrn VI

000
001
010
0 l l
100
l 0 l
l l 0
l l l

(0)
( l )
(2)
(3)
(4)
(5)
(6)
(7)

The decimal numbers corresponding to these sequences of l's
and 0's regarded as bin ary numbers are shown in parentheses to
the right.

We see that there are 8 (0 and I through 7) three-digit binary
numbers. We may note that 8 is 23. We catr, in fact, regard an
orderly listing of binary digits n intervals long as simply setting
down 2n successive binary numbers, starting with 0. As examples,
in Table VII the numbers of different patterns corresponding to
different numbers r? of binary digits are tabulated.

We see that the number of different patterns increases very
rapidly with the number of binary digits. This is because we double
the number of possible patterns each time we add one digit. When
we add one digit, we get all the old sequences preceded by a 0 plus
all the old sequences preceded by a l.

The binary system of notation is not the only alternative to the
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Tanu VII

7 l

n (Number of Binary Digits) Number of Patterns (2")

I
2
3
4
5

l0
20

decimal system. The octal system is very important to people who
use computers. We can regard the octal system as made up of the
e igh t  d ig i ts  0 ,  1 ,2 ,3 ,4 ,  5 ,  6 ,7 .

When we write 356 in the octal system we mean

3 x 8 2 + 5 x 8 + 6 x l
-3  x  &  +  5  x  8  +  6  X  I
- 238 in decimal notation

We can convert back and forth between the octal and the binary
systems very simply. 

'We 
need merely replace each successive block

of three binary digits by the appropriate octal digit, as, for instance,

b i n a r y  0 1 0  l l l  0 1 1  l l 0
o c t a l  2 7 3 6

People who work with binary notation in connection with com-
puters find it easier to remember and transcribe a short sequence
of octal digits than a long group of bin ary digits. They learn to
regard patterns of three successive binary digits as an entity, so that
they will think of a sequence of twelve binary digits as a succession
of four patterns of three, that is, as a sequence of four octal digits.

It is interesting to note, too, that, just as a pattern of pulses and
spaces can correspond to a sequence of binary digits, so a sequence
of pulses of various amplitudes (0, I ,2,3,4,5,6,7) can correspond
to a sequence of octal digits. This is illustrated in Figure IV-3. fn
a, we have the sequence of off-on, 0- l pulses corresponding to the
binary number 0l0l l10l I I10. The corresponding octal number is
2736, and tn b this is represented by a sequence of four pulses of
current having amplitudes 2, 7, 3, 6.

2
4
8

t6
32

1,024
1,048,57 6
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6

4
2
o

(a)

(b)
l

Fig. IV-3

Conversion from binary to decimal numbers is not so easy. On
the average, it takes about 3.32 binary digits to represent one
decimal digit. Of course we can assign four binary digits to each
decimal digit, as shown in Table VIII, but this means that some
patterns are wasted; there are more patterns than we use.

It is convenient to think of sequences of 0's and I os or sequences
of pulses and spaces as binary numbers. This helps us to under-

Tnsrn VIII

Binarv Number Decimal Digit

0000
0001
0010
001 l
0100
0 l0 l
0 l  l 0
0 l l l
1000
l00l
l 0 l 0
l 0 l  I
l100
l 1 0 l
l l l 0
l l l l

0
I
2
3
4
5
6
7
8
9

not used
not used
not used
not used
not used
not used
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stand how many sequences of a different length there are and how
numbers written in the binary system correspond to numbers
written in the octal or in the decimal system. In the transmission
of information, however, the particular number assigned to a
sequence of binary digits is irrelevent. For instance, if we wish
merely to transmit representations of octal digits, we could make
the assignments shown in Table IX rather than those in Table VI.

Tnnln IX

Sequence of Binary Digits Octal Digit Represented

000
001
010
0 l l
100
l0 l
l l 0
l l l

5
7
I
6
0
4
2
3

Here the "binary numbers" in the left column designate octal
numbers of different numerical value.

In fact, there is another way of lookirg at such a correspondence
between binary digits and other symbols, such as octal digits, a way
in which we do not regard the sequence of binary digits as part of
a binary number but rather as means of choosing or designating
a particular symbol.

We can regard each 0 or I as expressing an elementary choice
between two possibilities. Consider, for instance, the "tree of
choice" shown in Figure IV-4. As we proceed upward from the root
to the twigs, let 0 signify that we fake the left branch and let I
signify that we take the right branch. Then 0 I I means left,
right, right and takes us to the octal digit 6, just as in Table IX.

Just as three binary digits give us enough information to deter-
mine one among eight alternatives, four binary digits can determine
one among sixteen alternatives, and twenty binary digits candeter-
mine one among 1,048,576 alternatives. We can do this by assign-
itg the required bin ary numbers to the alternatives in any order
we wish.
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7  |  6 0  4  2

Fig. IV-4

The alternatives which we wish to specify by successions of
binary digits need not of course be numbers at all. In fact,we began
by considering how we might encode English text so as to transmit
it electrically by sequences of pulses and spaces, which can be
represented by sequences of binary digits.

A bare essential in transmitting English text letter by letter is

twenty-six letters plus a space, or twenty-seven symbols in all. This
of course allows us no punctuation and no Arabic numbers.

We can write out the numbers (three, not 3) if we wish and use
words for punctuation, (stop, comma, colono etc.).

Mathematics says that a choice among 27 symbols colresponds
to about 4.75 binary digits. If we arc not too concerned with
efficienc), we can assign a different 5-digit binary number to each
character, which will leave five 5-digit binary numbers unused.

My typewriter has 48 keys, including shift and shift lock. We
might add two more o'symbols" representing carriage return and
line advance, making a total of 50. I could encode my actions in

typing, capit ahzatioil, punctuation, and all (but not insertion of the
paper) by a succession of choices among 50 symbols, each choice
corresponding to about 5.62 binary digits. We could use 6 binary
digits per character and waste some sequences of bin aty digits.

This waste arises because there are only thirty-two 5-digit binary
numbers, which is too few, while there are sixty-four 6-digit binary
numbers, which is too many. How can we avoid this waste? If we
have 50 characters, w€ have 125,000 possible different groups of 3
ordered characters. There are 13l ,072 different combinations of
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l7 bin ary digits. Thus, if we divide our text into blocks of 3 succes-
sive characters, we can specify any possible block by a l7-digit
binary number and have a few left over. [f we had represented each
separate character by 6 binary digits, we would have needed 18
binary digits to represent 3 successive characters. Thus, by this
block coding, we have cut down the number of binary digits we use
in encoding a given length of text by u factor 17 / 18.

Of course, we might encode English text in quite a different way.
We can say a good deal with 16,384 English words. That's quit e a
large vocabulury. There are just 16,384 fourteen-digit binary num-
bers. We might assign 16,357 of these to different useful words and
27 to the letters of the alphabet and the space, so that we could
spell out any word or sequence of words we failed to include in
our word vocabulary. We won't need to put a space between words
to which numbers have been assigned; rt can be assumed that a
space goes with each word.

If we have to spell out words very infrequently, we will use about
14 binary digits per word in this sort of encoding. In ordinary
English text there are on the average about 4.5 letters per word.
As we must separate words by a space, when we send the message
character by character, even if we disregard capitalization and
punctuation, we will require on the average 5.5 characters per
word. If we encode these using 5 binary digits per character, we
will use on the average 27 .5 binary digits per word, while in encod-
itg the message word by word we need only 14 binary digits
per word.

How can this be so? It is because, in spelling out the message
letter by letter, we have provided means for sending with equal
facility all sequences of English letters, while, in sending word by
word, we restrict ourselves to English words.

Clearly, the average number of binary digits per word required to
represent English text depends strongly on how we encode the text.

Now, English text is just one sort of message we might want to
transmit. Other messages might be strings of numbers, the human
voice, a motion picture, or a photograph. If there are efficient and
inefficient ways of encoding English text, we may expect that there
will be efficient and inefficient ways of encodirg other signals
as well.



76 Symbols, Signals and Noise

Indeed, we may be led to believe that there exists in principle
some best way of encoding the signals from a given message source,
a way which will on the average require fewer bin ary digits per
character or per unit time than any other way.

If there is such a best way of encoding a signal, then we might
use the average number of bin ary digits required to encode the
signal as a measure of the amount of information per character or
the amount of information per second of the message source which
produced the signal.

This is just what is done in information theory. How it is done
and further reasons for so doing will be considered in the next
chapter.

Let us first, however, review very briefly what we have covered
in this chapter. fn communication theory, wo regard coding very
broadly, as representing one signal by another. Thus a radio wave
can represent the sounds of speech and so form an encoding of
these sounds. Encodirg is, however, most simply explained and
explored in the case of discrete message sources, which produce
messages consisting of sequences of characters or numbers. For-
tunately, we can represent a continuous signal, such as the current
in a telephone line, by u number of samples of its amplitude, using,
each second, twice as many samples as the highest frequenc)
present in the signal. Further we can if we wish represent the ampli-
tude of each of these samples approximately by u whole number.

The representation of letters or numbers by sequences of off-or-
on signals, which can in turn be represented directly by sequences
of the binary digits 0 and 1, is of particular interest in communi-
cation theory. For instance, by using sequences of 4 binary digits
we can form 16 binary numbers, and we can use l0 of these to
represent the l0 decimal digits. Or, by using sequences of 5 binary
digits we can form 32 btnary numbers, and we can use 27 of these
to represent the letters of the English alphabet plus the space. Thus,
we can transmit decimal numbers or English text by sending
sequences of off-or-on signals.

We should note that while it may be convenient to regard the
sequences of binary digits so used as binary numbers, the numerical
value of the binary number has no particular significance; we can
choose any binary number to represent a particular decimal digit.
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If we use 10 of the 16 possible 5-digit binary numbers to encode
the 10 decimal digits, we never use (we waste) 6 binary numbers.
We could, but never do, transmit these sequences as sequences of
off-or-on signals. 

'We 
can avoid such waste by means of block

coding, in which we encode sequences of 2, 3, or more decimal
digits or other characters by means of bin ary digits. For instance,
all sequences of 3 decimal digits can be represented by l0 binary
digits, while it takes a total of 12 binary digits to represent sepa-
rately each of 3 decimal digits.

Any sequence of decimal digits may occur, but only certain
sequences of English letters ever occur, that is, the words of the
English language. Thus, it is more efficient to encode English words
as sequences of bin ary digits rather than to encode the letters of
the words individually. This again emphasizes the gain to be made
by encoding sequences of characters, rather than encodirg each
character separately.

All of this leads us to the idea that there may be a best way of
encoditg the messages from a message source, a way which calls
for the least number of binary digits.



CHAPTER Entropy

IN rnn LAST cHAprER, we have considered various ways in which
messages can be encoded for transmission. Indeed, all communica-
tion involves some sort of encoding of messages. In the electrical
case, letters may be encoded in terms of dots or dashes of electric
current or in terms of several different strengths of current and
directions of current flow, as in Edisonos quadruplex telegraph. Or
we can encode a message in the binary language of zeros and ones
and transmit it electrically as a sequence of pulses or absences
of pulses.

Indeed, we have shown that by periodically sampling a continu-
ous signal such as a speech wave and by representing the ampli-
tudes of each sample approximately by the nearest of a set of
discrete values, we can represent or encode even such a continuous
wave as a sequence of binary digits.

We have also seen that the number of digits required in encoding
a given message depends on how it is encoded. Thus, it takes fewer
binary digits per character when we encod e a group or block of
English letters than when we encode the letters one at a time.
More important, because only a few combinations of letters form
words, it takes considerably fewer digits to encode English text
word by word than it does to encode the same text letter by letter.

Surely, there are still other ways of encoding the messages Pro-
duced by u particular ergodic source, such as a source of English
text. How many binary digits per letter or per word are really
needed? Must we try all possible sorts of encoditg in order to find

78
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out? But, if we did try all forms of encoding we could think of, we
would still not be sure we had found the best form of encoding,
for the best form might be one which had not occurred to us.

Is there not, in principle at least, some statistical measurement
we can make on the messages produced by the source, a measure
which will tell us the minimum average number of bin ary digits
per symbol which will serve to encode the messages producedby
the source?

In considering this matter, let us return to the model of a mes-
sage source which we discussed in Chapter III. There we regarded
the message source as an ergodic source of symbols, such as letters
or words. Such an ergodic source has certain unvarying statistical
Properties: the relative frequencies of symbols; the probability that
one symbol will follow a particular other symbol, or pair of sym-
bols, or triplet of symbols; and so on.

In the case of English text, we can speak in the same terms of
the relative frequencies of words and of the probability that one
word will follow a particular word or a particular pair, triplet, or
other combination of words.

In illustrating the statistical properties of sequences of letters or
words, we showed how material resembling English text can be
produced by a sequence of random choices among letters and
words, provided that the letters or words are choJen with due
regard for their probabilities or their probabilities of following a
p.receditg sequence of letters or words. fn these examples, itre
throw of a die or the picking of a letter out of a hat can serve tooochoose" the next symbol.

In writing or speaking, we exercise a similar choice as to what
we shall set down or say next. Sometimes we have no choice; Q
must be followed by u. We have more choice as to the next
symbol in beginnitg a word than in the middle of a word. How-
ever, in any message source, living or mechanical, choice is con-
tinually exercised. Otherwise, the messages produced by the source
would be predetermined and completely predictable.

Corresponding to the choice exercised by the message source in
producing the message, there is an uncertainty on tht part of the
recipient of the message. This uncertainty is resolved when the
recipient examines the message. It is this resolution of uncertainty
which is the aim and outcome of communication.
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If the message source involved no choice, if, for instance, it
could produce only an endless string of ones or an endless string
of zeros, the recipient would not need to receive or examine the
message to know what it was; he could predict it in advance. Thus,
if we are to measure information in a rational way, we must have
a measure that increases with the amount of choice of the source
and, thus, with the uncertainty of the recipient as to what message
the source may produce and transmit.

Certainly, for any message source there ate more long messages
than there are short messages. For instance, there are 2 possible
rnessages consisting of I binary digit, 4 consisting of 2 binary
digits, 16 consisting of 4 binary digits, 256 consisting of 8 binary
digits, and so on. Should we perhaps say that amount of informa-
tion should be measured by the number of such messages? Let us
consider the case of four telegraph lines used simultaneously in
transmitting binary digits between two points, all operating at the
same speed. Using the four lines, we can send 4 times as many
digits in a given period of time as we could using one line. It also
seems reasonable that we should be able to send 4 times as much
information by using four lines. If this is so, we should measure
information in terms of the number of binary digits rather than
in terms of the number of different messages that the binary digits
can form. This would mean that amount of information should be
measured, not by the number of possible messages, but by the
logarithm of this number.

The measure of amount of information which communication
theory provides does this and is reasonable in other ways as well.
This measure of amount of information is called entropy. If we want
to understand this entropy of communication theory, it is best first
to clear our minds of any ideas associated with the entropy of
physics. Once we understand entropy as it is used in communica-
tion theory thoroughly, there is no harm in trying to relate it to
the entropy of physics, but the literature indicates that some
workers have never recovered from the confusion engendered by
an early admixture of ideas concerning the entropies of physics
and communication theory.

The entropy of communication theory is measured tn bits. 
'We

may say that the entropy of a mess age source is so many bits per
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letter, or per word, or per message. If the source produces symbols
at a constant rate, we can say that the source has an entropy of
so many bits per second.

Entropy increases as the number of messages among which the
source may choose increases. It also increases as the freedom of
choice (or the uncertainty to the recipient) increases and decreases
as the freedom of choice and the uncertainty are restricted. For
instance, arestriction that certain messages must be sent either very
frequently or very infrequently decreases choice at the source and
uncertainty for the recipient, and thus such a restriction must
decrease entropy.

It is best to illustrate entropy first in a simple case. The mathe-
matical theory of communication treats the message source as an
ergodic process, a process which produces a string of symbols that
are to a degree unpredictable. We must imagine the message source
as selecting a given message by some randoffi, i.e., unpredictable
means, which, however, must be ergodic. Perhaps the simplest case
we can imagine is that in which there are only two possible sym-
bols, sa/, X and Y, between which the message source chooses
repeatedly, each choice uninfluenced by any previous choices. In
this case we calL know only that X will be chosen with some
probability po and X with some probability pt, as in the outcomes
of the toss of a biased coin. The recipient can determine these
probabilities by examining a long string of characters (X's, f's)
produced by the source. The probabilities po and pt must not
change with time if the source is to be ergodic.

For this simplest of cases, the entropy H of the message source
is defined as

H - - (po log po * h log p) bits per symbol

Thus, the entropy is the negative of the sum of the probabrhty po
that X will be chosen (or will be received) times the logarithm of
Po and the probability rrthat Y will be chosen (or will be received)
times the logarithm of this probability.

Whatever plausible arguments one may give for the use of
entropy as defined in this 1nd in more compliiated cases, the real
and true reason is one that will become apparent only as we
proceed, and the justification of this formula for entropy will
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therefore be deferred. It iso however, well to note again that there

are different kinds of logarithms and that, in information theory,

we use logarithms to the base 2. Some facts about logarithms to

the base 2 are noted in Table X.

Tnnrn X

Fraction p
Another WaY of

Writing p
Sttll Another WaY

of Writing P
Log p

I
2r

I
22

I
23

I
24

I
26

I
F

1
4

1
,

3
6
I
4
I
E
I

G
I
a
I

ffi

I
2.4r5

I
2L.4r5

2-.4L5

2-r

2-L.4r5

2-2

2-3

2-4

2-6

2-8

- .415

- 1

-  1 .415

- 2

- 3

- 4

- 6

- 8

The logarithm to the base z of a number is the power to which

2 must G raised to give the number'

Let us consider, for instan ce, a'omess age source" which consists

of the tossing of an honest coin. we can Iet x represent heads and

y represent 
-tails. 

The probability pr that the coin will turn up

heads is Vz andthe profubility pi iuat the coin will turn up lails

is also yz. Accordingly, from o"i expression for entropy and from

Table X we find that

H - -(YzlogVz + Vzlogh)
H -  - t (Yr ) ( - l )  +  (v r ) ( - l ) l
H - 1 bit per toss
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If the message source is the sequence of heads and tails obtained
by tossing a coin, it takes one bit of information to convey whether
heads or tails has turned up.

Let us notice, now, that we can represent the outcome of succes-
sively tossing a coin by a number of bin ary digits equal to the
number of tosses, letting I stand for heads and 0 stand for tails.
Hence, in this case at least, the entropy, one bit per toss, and the
number of binary digits which can represent tfie outcome, one
binary digit per toss, are equal. In this case at least, the number
of bin ary digits necessary to transmit the message generated by
the source (the succession of heads and tails) is equat to the entropy
of the source.

Suppose the message source produces a string of I's and 0's by
tossin g a coin so weighted that it turns up heads 3/q of the time and
tails only t/q of the time. Then

Pt = 3/q

P o = V q
H - - (Ve log tA + 3/n log 3/+)

H -  - t (vo) ( -2 )  +  ( ro ) ( - .415) I
H - .81 I bit per toss

We feel that, in the case of a coin which turns up heads more
often than tails, we know more about the outcome than if heads
or tails were equally likely. Further, if we were constrained to
choose heads more often than tails we would have less choice than
if we could choose either with equal probability. We feel that this
must be so, for if the probability for heads were I and for tails 0,
we would have no choice at all. And, we see that the entropy for
the case above is only.Sll bit per toss. We feel somehow tliit we
gught to be able to represent the outcome of a sequence of such
biased tosses by fewer than one binary digit per toJs, but it is not
immediately clear how many binary digitJ we must use.

If we choose heads over tails with probability p1, the probability
Po of choosing tails must of course be I - pr.Thus, if we know 7r1we-know/o as well. We can compute H for various values ofp,
Td plot a graph of ̂ fIvs./r.Suclr,a curve is shown in Figure V-1.
^F/ has a maximum value of I when pr is 0.5 and is 0 whJn pr is 0
or l, that is, when it is certain that the message source ul*uyt
produces either one symbol or the other.
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H _
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Here the sign ) (sigma) means to sum or to

o
E
o

F

I

P o  o R  P '
Fig. V-r

Really, whether we call heads X and tails r or heads r and tails

X is immaterial, so the curve of H vs' pt must be the same as H

vs. po. Thus, the curve of Figure v- I is symmetrical about the

dashed center line at pt andlo eQual to 0.5.

A message source -uy pioduce successive choices among the

ten decimal-digits, or u-ottg the twenty-six letters of the alphabet'

or among the many thousairds of words of the English language'

Let us consider the case in which the message sou{ce produces one

amon E nsymbols or words, with probabilites which are independ-

ent of preuio,r, choices. In this tute the entropy is defined as
n

symbol (5.1)

add up various terms.
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Ptis the probability of the i th symbol being chosen. The i - I below
and n above the ) mean to let i be I ,2,3,etc. up to n, so the equa-
tion says that the entropy will be given by ad-ding h 1og pt and
PzlogPz and so on, includitg all symbols. We see that when n = 2
we have the simple case which we considered earlier.

Let us take an example. Suppose, for instance, that we toss two
coins simultaneously. Then there are four possible outcomes, which
we can label with the numbers I through 4:

H  H o r  I
H  T o r 2
T  H o r 3
T  T o r 4

If the coins are honest, the probability of each outcome ts rA and
the entropy is

H - - (v4 rog t/a + vn log y4 + t/n log y4 + ve log va)
H -  -  (  -Yz -Y2 - t /2  -k)
H - 2 bits per pair tossed

It takes 2 bits of information to describe or convey the outcome
of tossi.g a pair of honest coins simultaneously. As in the case of
tossing one coin which has equal probabilities of landirg heads or
tails, we can in this case see that we can use 2 binary digits to
describe the outcome of a toss: we can use I binary digit fo; each
coin. Thus, in this case too, we can transmit the message generated

9y ltt. process (of tossing two coins) by using a numblrbf binary
digits equal to the entropy.

If we have some number n of symbols all of which are equally
probable, the probability of any particular one turning up ii t t i,
so we have n terms, each of which is | / n log | / n. Thus, the entropy
is in this case

H - -log l/n bits per symbol

For instance, an honest die when rolled has equal probabilities of
turning up any number from I to 6. Hence, the entropy of the
sequence of numbers so produced must be log Yo, or 2.58 bits
per throw.

More generally, suppose that we choose each time with equal
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likelihood among all bin ary numbers with N digits. There are 2N

such numbers, so

n :  2 N

From Table X we easilY see that

log l /n = log 2-N - -N

Thus, for a source which produces at each choice with equal likeli-

hood some ,nf-digit binary number, the entropy is N bits per ttlm-

ber. Here the ,rrersug. pioduced by the source is a binary number

which can certainly-be represented by bin ary digits. And, again,

the message can be represented by a number of bin ary digits equ1l

to the .r#opy of the message, measured in bits. This example

illustrates giapktically how itte logarithm must be the correct

mathematical function in the entropy'
Ordinarily the probability that tlie message source will produce

a particulai ry-bol is different for different symbols. Let us take

as an .*u*pi. a message source which produces English -y-?ldt
independen^tly of what hur gone before but with the probabilities

characteristii of English prolr.. This colresponds to the first-order

word approximation given in Chapter-Ill.
In the case of Engfisn prose, we find as an empirical fact that if

we order the words u"rotding to frequency of usage' so that the

most frequently used, the mosi probaute-word (the, in fact ) is word

number l, the next most probable word @n is number 2, and so

or, then the probability for the rth word is very nearly (if r is not

too large)

p r :  ' l l f

If equation 5.2 were strictly true, the points-in Figure v-2, in which

*ord probability or frequency pr LS ptotted against word order or

rank r, would fiU on the solid lit e which extends from uppel feft
to lower right. we see that this is very nearly so. This empirical

inverse relalion between word probability and word rank is known

as Zipf 's law. We will discus s Ztpfos law in Chapter XII; here, wo

propose merelY to use it.
We can show that this equation (5 .2) cannot hold for all words.

To see this, let us consider tossittg a coin. If the probability of heads

(5.2)
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Fig. V-2

turning up is Vz and the probability of tails turnirg up is Vz, then
there is no other possible outcome : Vz + yz _ l. If there were an
additional probability of tAo that the coin would stand on edge, we
would have to conclude that in a hundred tosses we would &pect
I l0 outcomes: heads 50 times, tails 50 times, and standing on edge
l0 times. This is patently absurd. Thp probabilities of all outcomes
must add up to unity. Now, let us note that if we add up succes-
sively/r plusplt etc., as given by equation 5.2,we find that by the
time we came to pant the sum of the successive probabilities has
become unity. If we took this literally, we would conclude that no
additional word could ever occur. Equation 5.1 must be a little in
elTor.

Nonetheless, the error is not great, and Shannon used equation
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5.2 tncomputing the entropy of a mess a}e source which produr:t

words independEntly but *i[tr the proba6ilty of their.occurring in

Englistr teit. In order to make the sum of the probabilities of all

*oid, unity, he included onry the 9,727 most frequently used words.

He tound the entropy to be 9.14 bits per word.

In chapter Iv, we saw that English text can be encoded letter

by lett., uy using 5 binary digits per character or 27 .5 binary digits

pL, word. we ulso saw ittuiuy pro-viding different sequences of

birrury digits for each of 16,35i words and 27 characters, we could

.nrode nn$ish text by using about 14 bin ary digits q.t word. we

are now bEginning to suspect that the number of binary digits

actually req-uired Is given by the entrop), and, as we have seen'

Shannon,s estimate, 6ased on the relative probabilities of English

words, would be g.L4 binary digits Per word.

As a next step in exploring ittir matter of the number of binary

digits required to encode the message produced by a message

source, wo will consider a startling theorem which Shannon proved

concerning the "messages" produced by an ergodic source which

selects u ,Eq,rence of lelterJor words independently with certain

probabilities.
Letus consider all of the messages the source can produce which

consist of some particular large number of characters. For exam-

ple, we might clnsider all rnessag:s which ate 100,000 symbols

(tetterr, *Jrds, ch aracters) long. Mot. generally, let us consider

messages having a number M ofcharacters. Some of these messages

aremore prouaule than others. In the probable messagel, symbol

I occurs about Mp, times, symbol 7 occurs about Mp, times, etc.

Thus, in ther. probable meisages each symbol occurs with about

the frequency ,huru.teristic of the source. The source mighl pro-

duce other sorts of messages, for instance, a mess age consisting of

one symbol endlessly rep-eated or merely a message in which the

numbers of the various symbols differed markedly from M times

their probabilities, but it seldom does.

The remarkable fact is that , 1f H is the entropy of the source per

symbol, there are just about zMH probable messages, and the rest

of the messages uU have vanishingty small probabilities of ever

occurrirrg. triottrer words, if we ranked the messages from most

probabl; to least probable, and assigned binary numbers of MH
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digits to the 2MH most prbbable messag€s, we would be almost
certain to have a number corresponding to any M-symbol message
that the source actually produced.

Let us illustrate this in particular simple cases. Suppose that the
symbols produced are I or 0. If these are produced with equal
probabilities, a probability Vz that for I and a probability Vz that
for 0 the entropy H is, as we have seen, I bit per symbol. Let us
let the source produce messages M digits long. Then MH = 1,000,
and, accorditg to Shannon's theorem, there must be 2rooo different
probable messages.

Now, by using 1,000 binary digits we can writejust zLooo different
binary numbers. Thus, in order to assign a different bin ary num-
ber to each probable message, we must use binary numbers 1,000
digits long. This is just what we woulcl expect. In order to desig-
nate to the message destination which 1,000 digit binary number
the message source produces, we must send a mess age 1,000 binary
digits long.

But, suppose that the digits constituting the messages produced
by the message source are obtained by tossing a coin which turns
up heads, designating l, 3/q of the time and tails, designating 0, r/+
of the time. The typical messages so produced will contain more
I's than 0's, but that is not all. We have seen that in this case the
entropy H is only.8ll bit per toss. If M, the length of the message,
is again taken as 1,000 binary digits, MH is only 8ll. Thus, while
as before there are 2rooo possible messages, there ate only 28LL
probable messages.

Now, by using 8l I binary digits we can write 28Lr different
binary numbers, and we can assign one of these to each of the
1,000-digit probable messages, leaving the other improbable 1,000-
digit messages unnumbered. Thus, we can send word to a message
destination which probable 1,000-digit message our message source
produces by sending only 81 I binary digits. And the chance that
the message source will produce an improbable 1,000-digit mes-
sage, to which we have assigned no number, is negligible. Of
course, the scheme is not quite foolproof. The message source may
still very occasionally turn up a message for which we have no label
among all 2a11 of our 81l-digit binary labels. In this case we can-
not transmit the message-at least, not by using 8l I binary digits.
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We see that again we have a strong indication that the number

of bin ary digits iequired to transmit a message 1s 
just the entropy

in bits per slmbol times the number of symbols. And, we might

note that in this last illustration we achieved such an economical

transmission by block encoding-that is, by lumping 1,000 (or some

other large ,r.,rnu.r) message aigitr together and representing each

probablJcombination of digits by its individual code (of 811 binary

digits).-Ho* 
firmly and generally can this supposition be established?

So far we have considered only cases in which the message

source produces each symbol (number, letter, word) independently

of the iymbols it has produced before. we know this is not true

for Engiish text. Besid^es the constraints of word frequency, there

are constraints of word order, so that the writer has less choice as

to what the next word will be than he would if he could choose it

independently of what has gone before.

How are we to handle ittir situation? We have a clue in the

block coding which we discussed in chapter IV and which has been

brought to 
-our 

mind again in the lait example. In an ergodic

pro"Jrs the probability Jr tn. next letter may depe-1d only on the

preceding l,'2,3,4,5, lr more letters but not on earlier letters. The

second and third order approximations to English glven in chapter

Iil illustrate text produced by such a process. Indeed, in any

ergodic process of which we are to make mathematical sense the

effect of the past on what symbol will be progl:.d next must

decrease as the remoteness of ihat past is greater. This is reasonably

valid in the case of real English as well. while we can imagine

examples to the contrary (the consistent use of the same name for

a character in a novel),-in general the word I write next does not

depend on just what word I wrote 10,000 words back'

Now, ,rripose that before we encode a mess age we divide it up

into very rfirg blocks of symbols. If the blocks are long enough,

only thasymdols near the beginning -ill $epe1d 
on symbo-ls in the

pr.lio.r, 
-block, 

and, if we hake ltre block long enough,- these

symbols that do depend on -symbols 
in the previous block will

form a negligible puit of all th; symbols in the block. This makes

it possiblJfor us to compute the entropy per bl2ck of symb9l. uy

means of equation 5.1. T" keep matters straight, let us call the
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probability of a particular one of the multitudinous long blocks of
symbols, which we will call the i th block, P( Br). Then the entropy
per block will be

H -

i
Any mathematician would object to calling this the entropy. He

would sa/, the quantity H given by the above equati on approaches
the entropy as we make the block longer and longer, so that it
includes more and more symbols. Thus, we must assume that we
make the blocks very long indeed and get a very close approxima-
tion to the entropy. With this proviso, we can obtain the entropy
per symbol by dividing the entropy per block by the number N of
symbols per block

H - - ( r/N)
i

In general, an estimate of entropy is always high if it fails to take
into account some relations between symbols. Thus, as we make
N, the number of symbols per block, greater and greater, H as
given by 5.3 will decrease and approach the true entropy.

We have insisted from the start that amount of information must
be so defined that if separate messages are sent over several tele-
graph wires, the total amount of information must be the sum of
the amounts of information sent over the separate wires. Thus, to
get the entropy of several message sources operating simultane-
ously, we add the entropies of the separate sources. We can go
further and say that if a source operates intermittently we must
multiply its information rate or entropy by the fraction of the time
that it operates in order to get its average information rate.

Now, let us say that we have one message source when we have
just sent a particular sequence of letters such as TH. fn this case
the probability that the next'letter will be E is very high. We have
another particular message source when we have just sent NQ. In
this caso the probability that the next symbol will be U is unity.
We calculate the entropy for each of these message sources. We
multiply the entropy of a source which we label Bi by the proba-
bility p@) that this source will occur (that is, by the fraciion of
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instances in which this source is in operation). we multiply the

entropy of each other source by the probability that that source

will occur, and so on. Then we add afl the numbers we get in thi-:

way in order to get the average entropy or rate of the over-all

,oor.r, which is a combination of the many different sources' each

of which operates only part time. As an example, consider a source

involving digtu- ptoUuUilities only, so that the whole effect of the

past is simried .rp itr the letter last ptojtced. One source will be

the source we have when this letterls E; this will occur in.13 of

the total instances. Another source will be the source we have when

the letter just produced is W this will occur in .02 of the total

instances.
putting this in formal mathematical terms, we say that lf u

particulai biock of l/ symbols,,which we designate by B, has j,rlt

occurred, the probabiliiy that the next symbol will be symbol si is

Pnr(Si)

The entropy of this "source" which operates only when a partigu-

lar block of N symbols designated by Bo has just been produced is

-\ z,- r si) log pnr(si)- 
L.t '6i \-
l

But, in what fraction of instances does this particular message

source operate? The fraction of instances in which this source

operates is the fraction of instances in which we encounter block

Bi rather than some other block of symbols; we call this fraction

P@')

Thus, taking into account all blocks of N symbols, we write the

sum of the lntropies of all the separate sources (each separate

source defined bi what particurai block Bi of N symbols has

preceded the choice of the symbol si) as

Hrr - -Zp(B)p"t(si) log Pnt(si) (5.4)

I,J

The 1,7 under the summation sign rnean to let i and/ assume all

possible values and to add all the numbers we get in this way.

As we let the number N of symbols precedittg symbol S, become

very large, Hw approaches the entropy of the source. If there are
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no statistical influences extendirg over more than l/ symbols (this
will be true for a digram source for N - I and for a trigram
source for N - 2), then Hx is the entropy.

Shannon writes equation 5.4 a little differently. The probability
p(8" Si) of encounteritg the block ̂ Bi followed by the symbol Si
is the probability p@) of encountering the block Bi times the
probability pnn(Si) that symbol Si will follow block Bi. Hence, we
can write 5.4 as follows:

rrt
Hx - - 

Zp(B,, Si) log pni(S,)
ij

In Chapter III we consider a finite-state machine, such as that
shown in Figure III-3, &S a source of text. We can, if we wish, base
our computation of entropy on such a machine. In this case, we
regard each state of the machine as a mess age source and compute
the entropy for that state. Then we multiply the entropy for that
state by the probabilitl'that the machine will be in that state and
sum (add up) all states in order to get the entropy.

Putting the matter symbolically, suppose that when the machine
is in a particular state i it has a probability pr(j) of producing a
particular symbol which we design ate by j.For instance, in a state
labeled , - l0 it might have a probability of 0.03 of producing the
third letter of the alphabet, which we label j - 3. Then

Pto(3 )

The entropy Ht of state i is computed in accord with 5.1:

H i :

j
Now, we say that the machine has a probability Pt of being in the
ith state. The entropy per symbol for the machine as a source of
symbols is then

H _

i
We can write this as

\(-.l

H - - 
ZPtp{i) log p,U) bits per symbol (5.5)
ij
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pr is the probability that the finite-state machine is in the ith state,

and po(ji is the probability that it produces theitn sy*bol when

it is in the i th stite. The i andT under the X mean to allow both i

and j to assume all possible values and to add all the numbers so

obtained.
Thus, we have gone easily and reasonably from the entropy of

a source which ploduces Jymbols independently uld to which

equation 5.1 uppfi.s to the more difficult case in which the proba-

Uitity of a rytttUol occurring depends on what has gone before. And,

*. huve three alternativehefttods for computing or defi.ning the

entropy of the message source. These three methods are equivalent

and tigotously cotreCt for true ergodic sources. We should remem-

ber, of courr., that the source of Engtish text is only approximately

ergodic.
brrc. having defined entropy per symbol in a perfectly general

wa), the ptoblem is to relate it unequivocally to the average

numb.t of binary digits per symbol necessary to encode a message-

We have seen it uiif we divide the message into a block of letters

or words and treat each possible block as a symbol, we can com-

pute the entropy per bfock by the same formula we used per

independent sy*Uot and get as close as we like to the source

entropy merely by making the blocks very long.

Th;;, the ptobl.- is to find out how to encode efficiently in

binary digits u r.qrrence of symbols chosen from a very large grouP

of symbols, each of *nich has a certain prybabilityof being chosen.

Shannon and Fano both showed ways of doing this, and Huffman

found an even better way, which we shall consider here.

Let us for convenience list all the symbols vertically in order of

decreasing probability. S,rppose the symbols are the eight words

the, man, to^, runs, hoise, likis, horse, sells, which occur independ-

ently with probabilities of their being chosen, or appearing, as

listed in Table XI.
We can compute the entropy per word by means of 5.1 ; it ts 2.21

bits per word. However, if we-merely assigned one of the eight

3-digit binary numbers to each word, we would need 3 digits to

transmit eactrword. How can we encode the words more efficiently?

Figure V-3 shows how to construct the most efficient code for

.rrroling such a mess age word by word. Thewords are listed to the
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Word Probabilitv/
the
man
to
runs
house
likes
horse
sells

.50

. 1 5

. t 2

. 1 0

.04

.04

.03

.02

left, and the probabilities are shown in parentheses. In construct-
irg the code, we first find the two lowest probabilities, .02 (sells)
and .03 (horse), and draw lines to the point marked .05, the prob-
ability of either horse or sells. We then disregard the individual
probabilities connected by the lines and look for the two lowest
probabilities, which are .04 (like) and .04 (house). We draw lines
to the right to a point marked .08, which is the sum of .04 and .04.
The two lowest remainirg probabilities are now .05 and .08, so we
draw a line to the right connecting them, to give a point marked

T H E  ( . S O )

MAN (  . t  5)

T O  ( , 1  2 1

RUNS (  . t  o)

HOUSE ( .OA;

L t K E  ( . o 4 )

HORSE (  .O 3)

SELLS (  ,OZ1 ( .os )
Fig. V-3

(r.oo)
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.13. We proceed thus until paths run from each word to a common

point toihe right, the point marked 1.00. We then label each upp-er

pattr going tolhe left from a point 1 and each lower path 0. The

lode ior i gt 
"n 

word is then the sequence of digits encountered

going left fto- the common point 1.00 to the word in question.

The codes are listed in Table XII.

Tanrn XII

Word Probability p Code 
Number of Digits

in Code, N
Np

the
man
to
runs
house
likes
horse
sells

.50

. 1 5

. t 2

.10

.04

.04

.03

.02

I
001
0 l l
010
0001I
00010
00001
00000

.50

.45
,36
.30
.20
,20
. 1 5
.10

n6

I
3
3
3
5
5
5
5

In Table XII we have shown not only each word and its code

but also the probability of each code and the number of digts in

each code. 1.n. probaUitity of a word times the number of digits

in the code gives the average number of digits per y:td in a long

message due to the use of that particular word. If we add the

prodults of the probabilities and ttre numbers of digits for all the

words, we get th; average number of digits per w-ord, which rs2.26.

This is a liitle larger than the entropy per word, which we found

to be Z.Zl bits pd word, but it is a imaller number of digits than

the 3 digits per word we would have used if we had merely assigned

a different 3-digit code to each word.
Not only rui it be proved that this Huffman code is the most

efficient code for .n.obirg a set of symbols having different prob-

abilities, it can be proved that it always calls for less than one

binary digit per symbol more than the entropy (in the above

.ru-ple, It cults for only 0.05 extra binary digits p91 sylbo^l).

Now suppose that wqcombine our symbols into blocks of 1,2,

3, or ,r,or.^symbols before encoding. Each of these blocks will have



Entropy 97

a probability (in the case of symbols chosen independently, the
probability of a sequence of symbols will be the product of the
probabilities of the symbols). We can find a Huffrnan code for these
blocks of symbols. As we make the blocks longer and longer, the
number of binary digits in the code for each block will increase.
Yet, our Huffman code will take less than one extra digit per block
above the entropy in bits per block! Thus, &S the blocks and their
codes become very long, the less-than-one extra digit of the Huff-
man code will become a negligible fraction of the total number of
digits, and, as closely as we like (by making the blocks longer), the
number of binary digits per block will equal the entropy in bits
per block.

Suppose we have a communication channel which ban transmit
a number C of off-or-on pulses per second. Such a channel can
transmit C brnaqy digits per second. Each binary digit is capable
of transmitting one bit of information. Hence we can say that the
information capacity of this communication channel is C bits per
second. If the entropy H of a message source, measured in bits per
second, is less than C then, by encodirg with a Huffman code, the
signals from the source can be transmitted over the channel.

Not all channels transmit binary digits. A channel, for instance,
might allow three amplitudes of pulses, or it might transmit differ-
ent pulses of different lengths, as in Morse code. We can imagine
connecting various different message sources to such a channel.
Each source will have some entropy or information rate. Some
source will give the highest entropy that can be transmitted over
the channel, and this highest possible entropy is called the channel
capacity C of the channel and is measured in bits per second.

By means of the Huffman code, the output of the channel when
it is transmitting a mess age of this greatest possible entropy can
be coded into some least number of binary digits per second, and,
when long stretches of message are encoded into long stretches of
binary digits, it must take very close to C binary digits per second
to represent the signals passing over the channel.

This encoding can, of course, be used in the reverse sense, and
C independent bin ary digits per second can be so encoded as to
be transmitted over the channel. Thus, a source of entropy H can
be encoded into f/ binary digits per second, and a general discrete
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channel of capacity C can be used to transmit C bits pel second-

We are tto* in a position to appreciate one of the fundamental

theorems of information theory. Shannon calls this the funda-

mental theorem of the noiseless channel. He states it as follows:

Let a source have entropy H (bits per symbol) and a channel have a

capacity [to transmit] C biis per second. Then it is possible to encode the

ousput of the source in such a way as to transmit at the average rate

(C/H) - € symbols per second over the channel, where e is arbitrarily

small. It is ttbt possible to transmit at an average rate greater than C/H-

Let us restate this without mathematical niceties. Any discrete

channel that we may specify, whether it transmits binary digits,

letters and numbers, or dots, dashes, and spaces of certain distinct

lengths has some particular unique channel capacity c: Any

.rg6aic mess age source has some particular entropy H- If H is less

thin or equal io C we can transmit the messages generated by the

source over the channel. If f/ is greater than C we had better not

try to do so, because we just plain can't'
We have indicated above how the first part of this theorem can

be proved. we have not shown that a source of entropy H -c.annot
be encoded in less than H brnary digits per symbol, but this also

can be proved.
We haue now firmly arrived at the fact that the entropy 9{ u

message source -.ur.tred in bits tells us how many binary digits

(or offIor-on pulses, or yeses-or-noes) are required, per charactet,

o, per letter, or per word, or per second in order to transmit

messages produ.iO by the sourie. This identification goes right

back to Shannon's original paper. In fact, the word bit is merely

a contraction of binaiy digit lnd is generally used in place of

binary digit.
Here I have used bit in a particular sense, as a measure of

amount of information, and in bttrer contexts I have used a differ-

ent expression, binary digit. I have done this in order to avoid a

confusion which might rality have arisen had I started out by using

bit to mean two different things.
After all, in practical situations the entropy- in bits is usually

different from the number of binary digits involved. Suppose, for

instance, that a message source rando*ty produces the symbol 1
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with a probability t/q and the symbol 0 with the probability 3/q and
that it produces l0 symbols per second. Certainly such a source
produces binary digits at a rate of 10 per second, but the informa-
tion rate or entropy of the source is .81 I bit per binary digit and
8.1 I bits per second. We could encode the sequence of binary digits
produced by this source by using on the average only 8.11 binary
digits per second.

Similarly, suppose we have a communication channel which is
capable of transmitting 10,000 arbitrarily chosen off-or-on pulses
per second. Certainly, such a channel has a channel capacity of
10,000 bits per second. However, if the channel is used to transmit
a completely repetitive pattern of pulses, we must say that the
actual rate of transmission of information is 0 bits per second,
despite the fact that the channel is certainly transmitting 10,000
binary digits per second.

Here we have used bit only in the sense of a binary measure of
amount of information, as a measure of the entropy or information
rate of a message source in bits per symbol or in bits per second
or as a measure of the information transmission capabilities of a
channel in bits per symbol or bits per second. We can describe it
as an elementary binary choice or decision among two possibilities
which have equal probabilities. At the message source a bit repre-
sents a cefiain amount of choice as to the message which will be
generated; in writing grammatical English we have on the average
a choice of about one bit per letter. At the destination a bit of
information resolves a certain amount of uncertainty; in receiving
English text there is on the average, about one bit of uncertainty
as to what the next letter will be.

When we are transmitting messages generated by an information
source by means of off-or-on pulses, we know how many binary
digits we are transmitting per second even when (as in most cases)
we don't know the entropy of the source. (If we know the entropy
of the source in bits per second to be less than the binary digits
used per second, we would know that we could get along in prin-
ciple with fewer binary digits per second.) We know how to use the
binary digits to specify or determine one out of several possibilities,
either by means of a tree such as that of Figure IV-4 or by means
of a Huffman code such as that of Figure V-3. It is common in such
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a case to speak of the rate of transmission of binary digits as a bit
rate, but there is a certain danger that the inexperienced may
muddy their thinking if they do this.

All that I really ask of the reader is to remember that we have
used bit rn one sense only, as a measure of information and have
called 0 or I a binary digit. If we can transmit 1,000 freely chosen
binary digits per second, we can transmit 1,000 bits of information
a second. It may be convenient to use bit to mean binary digit, but
when we do so we should be sure that we understand what we
are doing.

Let us now return for a moment to an entirely different matter,
the Huffman code given in Tbble XII and Figure V-3. When we
encode a message by using this code and get an uninterrupted
string of symbols, how do we tell whether we should take a particu-
lar I in the string of symbols as indicating the word the or as part
of the code for some other word?

We should note that of the codes in Table XII, none forms the
first part of another. This is called the prefix property. It has
important and, indeed, astonishing consequences, which are easily
illustrated. Suppose, for instance, that we encode the rnessage: the
man sells the house to the man the horse runs to the maII. The
encoded message is as follows:

lrn'l man I 'ers lrn'l
100100  00010

house

00

man
It

I
I

I

the I man
I

I  001

man

011

to

likes

I

Itn. I
t l

to

0 l  I

to

runs

010

runs

the

I

the

horse

00001

horsethe I
I

to
I

the I man
I

I  001

the I tttutt
I

Here the message words are written above the code grouPs.
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Now suppose we receive only the digits followitg the first vertical

dashed line below the digits. We start to decode by looking for the
shortest sequence of digits which constitutes a word in our code.
This is 00010, which corresponds to likes. We go on in this fashion.
The o'decoded" words are written under the code, separated by
dashed lines.

We see that after a few errors the dashed lines correspond to the
solid lines, and from that point on the deciphered message is
correct. We don't need to know where the message starts in order

to decode it as correctly as possible (unless all code words are of

equal length).
When we look back we can see that we have fulfilled the purpose

of this chapter. We have arrived at a measure of the amount of
information per symbol or per unit time of an ergodic source, and
we have shown how this is equal to the average number of binary
digits per symbol necessary to transmit the messages produced by
the source. We have noted that to attain transmission with neg-
ligibly more bits than the entropy, we must encode the messages
pioduced by the source in long blocks, not symbol by symbol.

We might ask, however, how long do the blocks have to be? Here
we come back to another consideration. There are two reasons for
encodirg in long blocks. One is, in order to make the average
number of bin ary digits per symbol used in the Huffman code
negligibly larger than the entropy per symbol. The other is, that
to encode such material as English text efficiently we must take
into account the influence of preceditg symbols on the probability
that a given symbol will appear next. We have seen that we can
do this using equation 5.3 and taking very long blocks.

We return, then, to the question: how many symbols l/ must the
block of characters have so that (1) the Huffrnan code is very
efficient, (2) the entropy per block, disregarding interrelations
outside of the block, is very close to l/ times the entropy per
symbol? In the case of English text, condition 2 ts governing.

Shannon has estimated the entropy per letter for English text
by measuring a personos ability to guess the next letter of a message
after seeing l, 2, 3, etc., preceditg letters. In these texts the
"alphabet" used consisted of 26 letters plus the space.

Figure V-4 shows the upper and lower bounds on the entropy
of English plotted vs. the number of letters the person saw in
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making his prediction. While the curve seems to drop slowly as
the number of letters is increased from l0 to 15, it drops substan-
tially between 15 and 100. This would appear to indicate that we
might have to encode in blocks as large as 100 letters long in order
to encode English really efficiently.

From Figure V-4 it appears that the entropy of English text lies
somewhere between 0.6 and 1.3 bits per letter. Let us assume a
value of I bit per letter. Then it will take on the average 100 binary
digits to encode a block of 100 letters. This means that there are
21oo probable English sequences of 100 letters. In our usual decimal
notatior, 2roo can be written as I followed by 30 zeroes, a fantas-
tically large number.

In endeavoring to find the probability in English text of all
meaningful blocks of letters 100 letters long, we would have to
count the relative frequency of occurrence of each such block.
Since there are l03o highly likely blocks, this would be physically
impossible.

Further, this is impossible in principle. Most of these 1030
sequences of letters and spaces (which do not include all meaning-
ful sequences) have never been written down! Thus, it is impossible
to speak of their relative frequencies or probabilities of such long
blocks of letters as derived from English text.

Here we are really confronted with two questions: the accuracy
of the description of English text as the product of an ergodic
source and the most appropriate statistical description of that
source. One may beligve that appropriate probabilities do exist in
some form in the human being even if they cannot be evaluated
by the examination of existing text. Or one may believe that the
probabilities exist and that they can be derived from data taken
in some way more appropriate than a naive computation of the
probabilities of sequences of letters. 

'We 
may note, for instance,

that equations 5.4 and 5.5 also give the entropy of an ergodic
source. Equation 5.5 applies to a finite-state machine. We have
noted at the close of Chapter III that the idea of a human being
being in some particular state and in that state producing some
particular symbol or word is an appealing one.

Some linguists hold, however, that English grammar is incon-
sistent with the output of a finite-state machine. Clearly, in trying
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to understand the structure and the entropy of actual English text

we would have to consider such text much more deeply than we

have up to this point.
It is safe if nbt subtle to apply arl exact mathematical theory

blindly and mechanically to the ideal abstraction for which it holds.

We must be clever and wise in using even a good and appropriate

mathematical theory in connection with actual, nonideal problems.

We should seek a simple and realistic description of the laws gov-

erning English text if we are to relate it with communication theory

as successfully as possible. Such a description -Tltt certainly

involve the grammar of the language, which we will discuss in the

next chapter.
ln ant event, we know that there are some valid statistics of

English text, such as letter and word frequencies, and the coding

theorems enable us to take advan tage of such known statistics.

If we encode English letter by letter, disregarding the relative

frequencies of the leiters, we requir e 4.76 binary digits per character

(inciuding space). If we encode letter by letter, takitg into account

the relative probabilities of various letters, we require 4.03 binary

digits per character. If we encode word by *olq', taking inlo
account relative frequencies of words, we require t.66 binary digits

per character. And, by usin g an ingenious and appropriate means'

Shutrtton has estimat;d the entropy of English text to be between

.6 and 1.3 bits per letter, so that we may hope for even more

efficient encoding.
If, however, we mechanically push some particular procedure

for finding the entropy of English text to the limit, we can easily

engender not only difficulties but nonsense. Perhaps we can ascribe

thi nonsense partly to differences between man as a source of

English text attO our model of an ideal ergodic source, but pally

*.ltrould ascribe it to the use of an inappropriate approach. We

can surely say that the model of rnan as an ergodic source of text

is good and useful if not perfect, and we should regard it highly

for these qua[ities.
This chlpter has been long and heavy going, utd a summary

seems in order. Clearly, it is impossible to recapitulate bri.ny 4
those matters which took so many pages to expound. We can only

re-emphasize the most vital points.
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In communication theory the entropy of a signal source in bits
per symbol or per second gives the average number of binary
digits, per symbol or per second, necessary to encode the messages
produced by the source.

We think of the message source as randomly, that is, unpre-
dictably, choosing one among many possible messages for trans-
mission. Thus, in connection with the message source we think of
entropy as a measure of choice, the amount of choice the source
excercises in selecting the one particular messa ge that is actually
transmitted.

We think of the recipient of the message, prior to the receipt of
the message, as being uncertain as to which among the many
possible messages the message source will actually gen erate and
transmit to him. Thus, we think of the entropy of the message
source as measuring the uncertainty of the recipient as to which
message will be received, an uncertainty which is resolved on
receipt of the message.

If the message is one among n equally probable symbols or
messag€s, the entropy is log n. This is perfectly natural, for if we
have log n btnary digits, we can use them to write out

) logn = n

different binary numbers, and one of these numbers can be used
as a label for each of the n messages.

More generally, if the symbols are not equally probable, the
entropy is given by equation 5.1. By regarding a very long block
of symbols, whose content is little dependent on precedirg symbols,
as a sort of super symbol, equation 5.1 can be modified to givethe
entropy per symbol for information sources in which the proba-
bility that a symbol is chosen depends on what symbols have been
chosen previously. This gives us equation 5.3. Other general
expressions for entropl are given by equations 5.4 and 5.5.

By assuming that the symbols or blocks of symbols which a
source produces are encoded by a most efficient binary code called
a Huffman code, it is possible to prove that the entropy of an
ergodic source measured in bits is equal to the average number of
binary digits necess ary to encode it.

An error-free communication channel may not transmit binary
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digits; it may transmit letters or other symbols. We can imagine

atiaching Cifferent message sources to such a channel and seeking

(usually-mathematically) the message source that causes the en-

itopy of tn. messa ge tiansmitted over the channel to be as large

ur iorsible. This laigest possible entropy of a message transmitted

over an error-free .hanttil is called the channel capacity. It can be

proved that, if the entropy of a source is less than the channel

fupurity of the channel, messages from the source can be encoded

,oihut ihey can be transmitted over the channel. This is Shannon's

fundamenial theorem for the noiseless channel.
In principle, expressions such as equations 5.1, 5.3, 5.4, and 5.5

enabl-e us to compute the entropy of a mess age source by statistical

analysis of mersiger produced by the source. Even for an ideal

ergodic source, thii would often call for impractically long compu-

taiions. [n the case of an actual source, such as English text, some

naive prescriptions for computing entropy can be meaningless.

An ipproximation to thebntropy can be obtained by disregard-

irg the lif.rt of some past symbols on the probability of the source

ptiaocing a particulai rymboi next. Such an approximation to the

entropy ir always too large and calls for encoding by means of more

binary digits tiran are ibsolutely necess ary. Thus, 1f we encode

English tJxt letter by letter, disregardittg even the relative pr9b1-

bilities of letters, *e require 4.76 binary digits per letter, while if

we encode word by word, taking into account the relative proba-

bility of words, we require !.66 binary digits per letter'

If we wanted to dd even better we would have to take into

account other features of English such as the effect of the con-

straints imposed by grammar on the probability that a message

source will produ ce a particular word.
While *r do not know how to encode English text in a highly

efficient way, Shannon made an ingenious experiment which shows

that the .t itopy of English text must lie between .6 and 1.3 bits

per character.- in this experiment a person guess,ed what letter

iould follow the letters of a passage of text many letters long.



CHAPTER VI Language and
Meaning

Tsn rwo cREAr TRIUMnHs of information theory are establishing
the channel capacity and, in particular, the number of binary digits
required to transmit information from a particular source and
showing that a noisy communication channel has an information
rate in bits per character or bits per second up to which errorless
transmission is possible despite the noise. In each case, the results
must be demonstrated for discrete and for continuous sources and
channels.

After four chapters of by no means easy preparation, we were
finally ready to essay in the previous chapter the problem of the
number of binary digits required to transmit the information gen-
erated by u truly ergodic discrete source. Were this book a text on
information theory, we would proceed to the next logical step, the
noisy discrete channel, and then on to the ergodic continuous
channel.

At the end of such a logical progress, however, our thoughts
would necessarily be drawn back to a consideration of the message
sources of the real world, which are only approximately ergodic,
and to the estimation of their entropy and the efficient encoding
of the messages they produce.

Rather than proceeding further with the strictly mathematical
aspects of communication theory at this point, is it not more
attractive to pause and consider that chief form of communicationo
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language, in the light of communication theory? A"q, in doing so,

*h; shiuld we noi t.t our thoughts stray a little in viewing T i--

portant part of our world from the small eminence we have

uttuirred? why should we not see whether even the broad problems

of language and meaning seem different to us in the light of what

we have learned?
In followirg such a course the reader should heed a word of

caution. So fai the main emphasis has been on what we know. What

we know is the hard core of science. However, scientists find it very

difficult to share the things that they know with laymen. To under-

stand the sure and the tr-urotably sure knowledge of science takes

the sort of hard thought which I am afraid was required of the

reader in the last few chaPters.
There is, however, another and easier though not entirely frivo-

lous side to science. This is a peculiar type of informed ignorance.

The scientist's ignorance is rather different from the layman's

ignorance, becauie the background of established fact and theory

Jn which the scientist bases his peculi ar brand of ignorance ex-

cludes a wide range of nonsense {rom his speculations. In the higher

and hazier reaches of the scientist's ignorao@, we have scientifically

informed ignorance about the origin of the universe, the ultimate

basis of knJwledge, and the relation of our present scientific knowl-

edge to politics, ft.e will, and morality. In this particular chapter

we will dabble in what I hope to be scientifically informed ignor-

ance about language.
The warning-is, 6f .o.rrse, that much of what will be put forward

here about lairguage is no more than informed ignorance. The

warning seems necessary because it is very hard for laymen to tell

scientific ignorance from scientific fact. Because the ignorance is

necessarily-expressed in broader, sketchier, and less qualified terms

than is the fact,it is easier to assimilate. Because it deals with grand

and unsolved problems, it is more romantic. Generally, it has a

wider currency and is held in higher esteem than is scientific fact.

However hizardous such ignorance may be to the layman' it is

valuable to the scientist. It i; this vision of unattained lands, of

unscaled heights, which rescues him from complacency u4 spurs

him beyond 
-rnere 

plorJding. But when the scientist is airing his

ignorar". he usualiy knowi what he is doing, while the unwarned
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layman apparently often does not and is left scrambling about on
cloud mountains without ever having set foot on the continents of
knowledge.

With this caution in mind, let us return to what we have already
encountered concemirg language and proceed thence.

In what follows we will confine ourselves to a discussion of
gramm atical English. We all know (and especially those who have
had the misfortune of listerirg to a transcription of a seemingly
intelligible conversation or technical talk) that much spoken Eng-
lish appears to be agrammatical, &S, indeed, much of Certrude
Stein is. So are many conventions and clich6s. ooMe heap big
chief " is perfectly intelligible anywhere in the country, yet it is
certainly not gramm atical. Purists do not consider the inverted
word order which is so characteristic of second-rate poetry as being
grammatical.

Thus, a discussion of grammatical English by no means covers
the field of spoken and written communication, but it charts a
course which we can follow with some sense of order and interest.

We have noted before that, if we are to write what will be
accepted as English text, certain constraints must be obeyed. We
cannot simply set down any word followirg any other. A complete
grammar of a language would have to express all of these con-
straints fully. It should allow within its rules the construction of
any sequence of English words which will be accepted, at some
particular time and accordirg to some particular standard, as
grammatical.

The matter of acceptance of constructions as grammatical is a
dfficult and hazy one. The translators who prodrrced the King
James Bible were free to say "feat not,'o "sin not," and "speak not"
as well as "think not," "do not," or "have not," and we frequently
repeat the aphorism "want not, waste not." Yet in our everyday
speech or writing we would be constrained to say "do not fear,"
"do not sin," or 'odo not speak," and we might perhaps say, "rf
you are not to want, you should not waste." What is grammatical
certainly changes with time. Here we can merely notice this and
pass on to other matters.

Certainly, a satisfactory grammar must prescribe certain rules
which allow the construction of all possible grammatical utterances
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and of grammatical utterances only. Besides doing this, satisfactory

rules of gtummar should allow us to analyze a sentence so as to

distinguiitr the features which were determined merely by the rules

of grammar from any other features.
If we once had such rules, we would be able to make a new esti-

mate of the entropy of English text, for we could see what part of

sentence structure is a mere mechanical followittg of rules and what

part involves choice or uncertainty and hence contributes to en-

iropy. Further, we could transmit English efficiently by transmit-

ting-as a message only data concerning the choices exercised in

constructing sentences ; at the receiver, we could let a grammar

machine bui]d grammatical sentences embodying the choices speci-

fied by the received message.
Even grammar, of couise, is not the whole of language, for a

sentence can be very odd even if it is grammatical. We can imagine

that, if a machitre cipable of producing only grammatical sentences

made its choices at random, it might perhaps produce such a sen-

tence as 'oThe chartreuse semiquaver skinned the feelings of the

rnanifold." A man presumably makes his choices in some other

way if he says, "Th; blue note flayed the emotions of the multi-

tude." The difference lies in what choices one makes while follow-

irg grammatical rules, not in the rules themselves. An understand-

i"E lf grammar would not unlock to us all of the secrets of

language, brrt it would take us a long step forward.

What sort of rules will result in the production of grammatical

sentences only and of all grammatical sentences, even when choices

are made at random? In Chapter III we saw that English-like

sequences of words can be produced by choosing a word at tan-

dom accordittg to its probability of succeeding a preceding se-

quence of *ords some M *ords long. An example of a second-order

word approximatioo, in which a word is chosen on the basis of its

succeeding the previous word, was given'
One can construct higher-order word approximations by using

. the knowledge of Englih which is stored in our heads. One can'

for instance,lUtuin u-footth-order word approximation by simply

showing a sequence of three connected words to a person and ask-

ing hi; to think up a sentence in which the sequence of words

occurs and to add the next word. By going from person to person

a long string of words can be constructed, for instance:
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l. When morning broke after an orgy of wild abandon he said
her head shook vertically aligned in a sequence of words signify-
ing what.

2. It happened one frosty look of trees
the wall.

waving gracefully against

3. When cooked asparagus has a delicious flavor suggesting
apples.

4. The last time I saw him when he lived.
These "sentences" are as sensible as they are because selections

of words were not made at random but by thinking beings. The
point to be noted is how astonishingly grammatical the sentences
are, despite the fact that rules of grammar (and sense) were ap-
plied to only four words at a time (the three shown to each person
and the one he added). Still, example 4 is perhaps du6iously
grammatical.

If Shannon is right and there is in English text a choice of about
I bit Per symbol, then choosing among a group of 4 words could
involve about 22 binary choices, or a choice among some l0 mil-
lion 4-word combinations. In principle, a computer could be made
to add words by using such a list of combinations, but the result
would not be assuredly grammatical, nor could we be sure that
this cumbersome procedure would produce all possible grammati-
cal sequences of words. There probably are sequences of words
which could form a part of a grammatical sentence in one case
and could not in another case. If we included such a sequence, we
would produce some nongrammatical sentences, and, if we ex-
cluded it, we would fail to produce all grammatical sentences.

If we go to combinations of more than four words, we will favor
grammar over completeness. If we go to fewer than four words,
we will favor completeness over grammar. We can't have both.

The idea of a finite-state machine recurs at this point. Perhaps
at each point in a sentence a sentence-producing machine shoutd
be in a particular state, which allows it certain choices as to what
state it will go to next. Moreover, perhaps such a machine can deal
with ceqtain classes or subclasses of words, such as singular nouns,
plural nouns, adjectives, adverbs, verbs of various tense and num-
ber, and so on, so as to produce grammatical structures into which
words can be fitted rather than sequences of particular words.

The idea of grammar as a finite-state machine is particularly
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appealing because a mechanist would assert that man must be a

finite-state machine, because he consists of only a finite number

of cells, or of atoms if we push the matter further.

Noam chomsky, a brilliint and highly regarded modern linguist,

rejects the finite-state machine as either a possible or a proper

,-rroo.t of grammatical structure. chomsky points out that there

aremany rules for constructing sequences of characters which can-

not be embodied in a finite-state machine. For instance, the rule

might be, choose letters at random and write them down until the

letter Z shows up, then repeat all the letters since the preced*g z

in reverse order, and then go on with a new set of letters, and so

on. This process will prodJce€ sequence of letters showing clear

evidence of long-rurg" order. Further, there is no limit to the pos-

sible length of ihe sequence between Z's. No finite-state machine

can simulate this process and this result.

Chomsky pointi out that there is no limit to the possible length

of gra**utibal sentences in English and argues th{ English sen-

tences are organ tzed in such a *uy tha-t this is sufficient to rule

out a finite-state machine as a souice of all possible English text'

But, can we really regard a sentence miles long as grap*ulical

when we know darnel wel that no one ever has or will produce

such a sentence and that no one could understand it if it existed?

To decide such a question, we must have a standard of being

grammatical. while bno*sky seems to refer being or not being

[ru,,,r' atical, and some questions of punctuation and meaning as

ivell, to spoken English, I think that his real criterion is: a sen-

tence is giam mattciif, in reading or saying it aloud with a natural

expressi6n and thoughtfully but ingenuously, it is deemed gram-

matical by a persorr-*lto speaks itl or perhaps by u person Yho
hears it. Slme problems which might p_lague others may not-bother

Chomsky becalse he speaks re-aikably well-connected and gram-

matical English.
whether or not the rules of grammar can be embodied in a

finite-state machine, chomsky of.rr persuasive evidence that it is

wrong and cumbersome to try to genera te a sentence by basing

the choice of the next word entirely and solely on words already

written down. Rather, Chomsky considers the course of sentence

generation to be something of this sort:
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We start with one or another of several general forms the sen-
tence might take; for example, a noun phrase followed by a verb
phrase. Chomsky calls such a pafiicular form of sentence a kernel
sentence. We then invoke rules for expanding each of the parts of
the kernel sentence. In the case of a noun phrase we may first de-
scribe it as an article plus a noun and finally as "the man." fn the
case of a verb phrase we may describe it as a verb plus an object,
the object as an article plus a noun, and, in choosing particular
words, oS "hit the ball." Proceeding in this way from the kernel
sentence, noun phrase plus verb phrase, we arrive at the sentence,
"The man hit the ball." At any stage we could have made other
choices. By making other choices at the final stages we might have
arrived at-" A girl Jaught a cat."

Here we see that the element of choice is not exercised sequen-
tially along the sentence from beginnirg to end. Rather, we choose
an over-all skeletal plan or scheme for the whole final sentence at
the start. That scheme or plan is the kernel sentence. Once the
kernel sentence has been chosen, we pass on to parts of the kernel
sentence. From each part we proceed to the constituent elements
of that part and from the constituent elements to the choice of
particular words. At each branch of this treelike structure grow-
itg from the kernel sentence, we exercise choice in arrivin g at the
particular final sentence, and, of course, we chose the kernel sen-
tence to start with.

Here I have indicated Chomsky's ideas very incompletely and
very sketchily. For instance, in dealing with irregular forms of
words Chomsky will first indicate the root word and its particular
grammatical form, and then he will apply certain obligatory rules
in arriving at the correct English form. Thus, in the branchirg con-
struction of a sentence, use is made both of optional rules, which
allow choice, and of purely mechanical, deterministic obligatory
rules, which do not.

To understand this approach further and to judge its merit, one
must refer to Chomsky's book,1 and to the references he gives.

Chomsky must, of course, deal with the problem of ambiguous
sentences, such as, o'The lady scientist made the robot fast while
she ate." The author of this sentence, a learned information theo-

l Noam Chomsky, Syntactic Structures, Mouton and Co., 's-Gravenhage, 1957.
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rist, tells me that, allowing for the vernacular, it has at least four

different meanings. It is perhaps too complicated to serve as an

example for detailed analYsis.
We might think that ambiguity arises_ only when.one or more

words can assume different meanings in what is essentially the y-*'

I*r"*atical structure. This is the case in "he was mad" (either

angry or lnsane) or o'the pilot was high" (in the sky or in his cups).

ch-omsky, however, gives a simple J^1m_ple of a phrase in which

the confusion is cle-arly grammatical. In "the shooting of the

hunters,,, the noun hunters may be either the subject, as in "the

growlirg of lions,, or the obj..i, as in o'the growing of flowers."

Chomiky points out that different rules of transformation applied

to different kernel sentences can lead to the same sequence of

grammatical elements. Thus, "the picture was painted by a real

artist" and ..the picture was painted by a new technique" seem to

correspond grammatically word for word, yet- the. first sentence

could have arisen as a transformation of o'a real artist painted the

picture,, while the second could not have arisen as a transforrna-

tion of a sentence havirg this form. When the final words as well

as the final grammatical elements are the same, the sentence is

ambiguous.
Chomsky also faces the problem that the distinction between

the provinces of grammar ind meanittg il not clear. Shall we say

that grammar allows adjectives but noi adverbs to modify nouns?

This allows 'ocolorless gi""n." Or should grammar forbid the asso-

ciation of some adjertlrr.r with some nouns, of some nouns with

some verbso and so on? With one choice, certain constructions are

grammatical but meaningless; with the other they are ungram-

matical.
we see that chomsky has laid out a plan for a grammar of

English which involves at each point in the synthesis_of a sentence

ceriain steps which are either obligatory or optional. The processes

allowed d this gramm ar cannof be carried out by u finite-state

machine, but they can be carried out by a more general machine

called a Turing machine, which is a finite-state machine plus an

infinitely long tape on which symbols can be written and from

which symbols cin be read or erased. The relation of Chomsky's

grammar to such machines is a proper study for those interested

in automata.
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Wb should note, however, that if we arbitrarily impose some
bound on the length of a sentence, even if we limit the length to
1,000 or I million words, then Chomsky's grammar does correspond
to a finite-state machine. The imposition of such a limit on sen-
tence length seems very reasonable in a practical way.

Once a general specification or model of a grammar of the sort
Chomsky proposes is set up, we may ask under what circumstances
and how can an entropy be derived which will measure the choice
or uncertainty of a mess a1e source that produces text according
to the rules of the grammar? This is a question for the mathema-
tically skilled information theorist.

Much more important is the production of a plausible and
workable grammar. This might be a phrase-structure grammar, as
Chomsky proposes, or it might take some other form. Such a
grammar might be incomplete in that it failed to produce or ana-
Iyze some constructions to be found in grammatical English. It
seems more important that its operation should correspond to what
we know of the production of English by human beings. Further,
it should be simple enough to allow the generation and analysis
of text by means of an electronic computer. I believe that com-
puters must be used in attackirg problems of the structure and
statistics of English text.

While a great many people are convinced that Chomsky's
phrase-structure approach is a very important aspect of granunar,
some feel that his picture of the generation of sentences should be
modified or narrowed if it is to be used to describe the actual gen-
eration of sentences by human beings. Subjectively, in speaking
or listening to a speaker one has a strong impression that sentences
are generated largely from beginning to end. One also gets the
impression that the person generating a sentence doesn't have a
very elaborate pattern in his head at any one time but that he
elaborates the pattern as he goes along.

I suspect that studies of the form of grammars and of the statis-
tics of their use as revealed by language will in the not distant
future tell us many new things about the nature of language and
about the nature of men as well. But, to say something more par-
ticular than this, I would have to outreach present knowledge-
mine and others.

A grammar must specify not only rules for putting different types
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of words together to make grammatical structures; it must divide

the actual riords of English into classes on the basis of the places

in which they can upp.u-t in grammatical structures. Linguists make

such a divisior purely on tlie basis of grammatical function with-

out invoking utty idea of meaning. Thus, all we can expect of u

grammar is the generation of grammatical sentences, and this in-

Il.rd., the exariple given euiliet: "The chartreuse semiquaver

skinned the feelings or the manifold." certainly th:. division of

words into gru---utical categories such as nouns, adjectives, and

verbs is not.'our sole guide .oirr.tning the use of words in produc-

irg English text.
What does influence the choice among words when the words

used in constructing grammatical sentences are chosen, not ar

random by a macttine] but rather by a live human being who,

through long training, speaks or wriies English according to the

rules or trr. grammult rnis question is not to be answered by u

vague appeaf to the word meining onl criteria in producing Eng-

lish sentences can be very complicated indeed. Philosophers and

psychologists have ,prrrriuted about and studied the use of words

u"O language for gett.rutions, and it is as hard to say anythig en-

tirely ,J* ibout ittir as it is to say anything entirgly true. In par-

ticuiar, what Bishop Berkeley wrote in the eighteenth century

concerning the use of tuttguage is so sensible that one can scarcely

make u ,.ironable comrnent without owing him credit.

Let us suppose that a poet of the scanniog, rhyming T-lool sets

out to write a grammatical poem. Much of his choice will be exer-

cised in selecting words whiih fit into the chosen rhythmic pattern'

which rhyme, uid which have alliteration and certain consistent

or agreeable sound values. This is particularly notable in Poe's

"Th; Be[s," "lJuaLume," and o'The Raven"'

Further, the poet will wish to bring together words which through

their sound as well as their sense arouse related emotions or im-

pressions in the reader or hearer. The different sections of Poe's
l.Th, Bells" illustrate this admirably. There is a marked contrast

between:
How theY tinkle, tinkle, tinkle'

In the icY air of night!

While the stars that oversPrinkle
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All the heavens, seem to twinkle
In a crystalline delight; . . .

and

Through the balmy air of night
How they ring out their delight!
From the molten-golden notes,
And all in tune,
What a liquid ditty floats . . .

Sometimes, the picture may be harmonious,
moving without even the trivial literal meaning
Poe's, as in Blake's two lines:

t17

congruous, and
of this verse of

Tyger, Tyget, burning bright
In the forests of the night . . .

In instances other than poetry, words may be chosen for euphony,
but they are perhaps more often chosen for their associations wiitr

lttd ability to excite passions such as those listed by Berkeley: fear,
love, hatred, admiration, disdain. Particular *ords or exprissions
move each of us to such feelings. In a given culture, certain words
and phrases will have a strong and common effect on the majority
of hearers, just as the sights, sounds or events with which they aie
associated do. The words of a hymn or psalm can induce a strong
religious emotion; political or racial epithets, a sense of alarm oi
contempt, and the words and phrases of dirty jokes, sexual
excitement.

One emotion which Berkeley does not mention is a sense of
understanding. By mouthing commonplace and familiar patterns
of words in connection with ill-understood matters, we can asso-
ciate some of our emotions of familiarity and insight with our per-
plexity about history ,life, the nature of knowledge, consciousness,
death, and Providence. Perhaps such philosophi ur makes use of
common words should be considered in terms of assertion of a
reassurance concerning the importance of man's feelings rather
than in terms of meaning.

One could spend days on end examining examples of motivation
in the choice of words, but we do continually get 6ack to the matter
of meaning. Whatever meaning may be, all else seems lost without
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it. A Chinese poem, hymn, deprecation, or joke will have little effect

on me unless I understand ittinrse in whatever sense those who

know a language understand it.
Though Lohn Cherry, a well-known information theorist, ap-

pears to-object, I think ittut it is fair to regard meaningful language

as a sort of code of communication. It certainly isn't a simple code

in which one mechanically substitutes a word for a deed- It's more

like those elaborate codes of early cryptography, in which many

alternative code words were listed for each common letter or word

(in order to suppress frequencies). But in language, E listings may

overlap. And one prtrott's code book may have different entries

from another's, which is sure to cause confusion.

If we regard langu age as an imperfegt code of communication,

we must uftimatel! rJrt meaning back to the intent of the user.

It is for this reason that I ask, "What do you mean?" even when I

have heard your words. Scholars seek the intent of authors long

dead, and th. Supreme Court seeks to establish the intent of Con-

gress in applying the letter of the law'

Furth.;;if r firco-e convinced that a man is lying, I inteqpret

his words as meaning that he intends to flatter or deceive me. If I

find that a sentence f,ur been produced by u computer, I inteqpret

it to mean that the computer is functiotring very cleverly.

I don't think that s,rih matters are quibbles; it seems that we

are driven to such considerations in connection with meaning if

we do regard ranguage as an imperfect,code of communication,

and as one which is s6metimes exploited in devious ways. We are

certainly far from any adequate treatment of such problems.

Grammatical sentences do, however, have what might be called

a formal meaning, regardless of intent. If we had a satisfactory

gramm ar, a *u.liirr. ,hould be able to establish the relations be-

tween the words of a sentence, indicating subject, verb, object, 1nd
what modifying phrases or clauses applyro what other words. The

next problem beyond this in seeking such formal meaning in sen-

tencei is the probl.m of associating words with objects, qualf itt'
actions, or relations in the world about us, including the world of

man's society and of his organized knowledge' - -
In the simple communic-ations of everyday lifq, we don't have

much trouble in associating the words that are used with the proper
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objects, qualities, actions, and relations. No one has trouble with
"close the east window" or "Henry is dead," when he hears such
a simple sentence in simple, unambiguous surroundings. fn a
familiar American room, anyone can point out the window; we
have closed windows repeatedly, and we know what direction east
is. Also, we know Henry (if we don't get Henry Smith mixed up
with Henry Jones), and we have seen dead people. If the sentence
is misheard or misunderstood, a second try is almost sure to
succeed.

Think, however, how puzzhng the sentence about the window
would be, even in translation, to a shelterless savage. And we can
get pretty puzzled ourselves concerning such a question as, is a
virus living or dead?

It appears that much of the confusion and puzzlement about the
associations of words with things of the world arose through an
effort by philosophers from Plato to Locke to give meaning to such
ideas as window, cat, or dead by associating them with general ideas
or ideal examples. Thus, we are presumed to identify a window by
its resemblance to a general idea of a window, to an ideal window,
in fact, and a cat by its resemblance to an ideal cat which embodies
all the attributes of cattiness. As Berkeley points out, the abstract
idea of a (or the ideal) triangle mus t at once be ooneither oblique,
rectangle, equilateral, equicrural nor scaleron, but all and none of
these at once."

Actually, when a doctor pronounces a man dead he does so on
the basis of certain observ ed signs which he would be at a loss to
identify in a virus. Further, when a doctor makes a diagnosis, he
does not start out by making an over-all comparison of the patient's
condition with an ideal picture of a disease. He first looks for such
signs as appearance, temperature, pulse, lesions of the skin, inflam-
mation of the throat, and so on, and he also notes such symptoms
as the patient can describe to him. Particular combinations of signs
and symptoms indicate certain diseases, and in differential diag-
noses further tests may be used to distinguish among diseases pro-
ducing similar signs ut O symptoms.

In a similar manner, a botanist identifies a plant, familiar or
unfamiliar, by the presence or absence of certain qualities of size,
color, leaf shape and disposition, and so on. Some of these quali-
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ties, such as the distinction between the leaves of monocotyledon-

ous and dicotyledonous plants, can be decisive; others, such as size,

can be merely indicativi. In the end, one is either sure he is right

or perhaps willing to believe that he is right; or the plant may be

a new species.
Thus, in the workaday worlds of medicine and botany, the idlaf

disease or plant is conriiroous by its_ absence as any actual useful

criterios.. Instead, we have lists oflqualities, some decisive and some

merely indicative.
The value of this observation has been confirmed strongly in

recent work toward enabling machines to carry out tasks of recog-

nition or classification. puily workers, perhaps misled by ??tly
philosophers, conceived the ideu of matihing a letter to an ideal

patter' or a letter or the spectrogram of a sound to an ideal spec-

trogram of the sound. The results were terrible. Audro), a pattern-

matching machine with the burk of a hippo and brains beneath

contempt, could reco Sutzedigits sp9fe1 by one voice or a selected

group of voices, but iudrey *ur ruoty fallible. we should, I think,

conclude that human recognition *brks this way in very simple

cases only, if at all.
Later and more sophisticated workers in the field of recognition

look for significant features. Thus, as a very simple ?ry-ple, 
rather

than haviig an ide al pattern of a capital Q, otte might describe Q

as a closed curve without corners or reversals of curvature and with

something attached between four and six o'clock.

In :.ftsi., L. D. Harmon built at the Bell Laboratories a simple

device weigtring a few pounds which almost infallibly recognizes

the digits from one to zlro written out as words in longhand.-Does

this gidget match the handwriting against patterns? You bet it

doesn,t! Instead, it asks such queJtiorr as, how many timet gid

the stylus go above or below certain lines? were I's dotted or T's

crossed?
Certainly, no one doubts that words refer to classes of objects,

actionr, urr'd so on. we are surrounded by and involved with a large

number of classes and subclasses of objects and actions which we'

can usefully associate with words. These include such objects as

plants (p.i, sunflowers . . .), animals (cats, dogs' ' '), machines

(autos, radios . . .), buildings (houses, towers ' ' '), clothing (skirts'
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socks . . .), and so on. They include such very complicated sequences
of actions as dressing and undressing (the absent-minded, includ-
itg myself, repeatedly demonstrate that they can do this uncon-
sciously); tying one's shoes (an act which children have considerable
difficulty in learning), eating, driving a car, reading, writing, adding
figures, playing golf or tennis (activities involvirg a host of distinct
subsidLary skills), listening to music, making love, and so on and
on and on.

It seems to me that what delimits a particular class of objects,
qualities, actions, or relations is not some sort of ideal example.
Rather, rt is a list of qualities. Further, the list of qualities cannot
be expected to enable us to divide experience up into a set of logi-
cal, shaqply delimited, and all-embracing categories. The language
of science may approach this in dealing with a narrow range of
experience, but the language of everyday life makes arbitrary,
overlapping, and less than all-inclusive divisions of experience. Yet,
I believe that it is by means of such lists of qualities that we iden-
tify doors, windows, cats, dogs, men, monkeys, and other objects
of daily life. I feel also that this is the way in which we identify
common actions such as running, skipping, jumpitrg, and tying,
and such symbols as words, written and spoken, &s well.

I think that it is only through such an approach that we can hope
to make a machine classify objects and experience in terms of
language, or rec ognrze and interpret language in terms of other
language or of action. Further, I believe that when a word cannot
offer a table of qualities or signs whose elements can be traced back
to common and familiar experiences, we have a right to be wary
of the word.

If we are to understand language in such a way that we can hope
some duy to make a machine which will use language successfully,
we must have a grammar and we must have a way of relating words
to the world about us, but this is of course not enough. If we are to
regard sentences as meaningful, they must in some way correspond
to life as we live it.

Our lives do not present fresh objects and fresh actions each duy.
They are made up of familiar objects and familiar though compli-
cated sequences of actions presented in different groupings and
orders. Sometimes we learn by adding new objects, or actions, or
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combinations of objects or sequences of actions to our stock, and

so we enrich or change our lives. Sometimes we forget objects and

actions.
our particular actions depend on the objects and events about

us. we dodge a car (a complicated sequence of actions). when

thirsty, we riop at the fountain and drink (another complicated but

recurrent *.qrr.ttce). In a packed crowd we may shoulder someone

out of the *uy as we have done before. But our information about

the world does not all come from direct observation, and our in-

fluence on others is happily not conflned to pushing and shoving.

we have a powerful tool for such purposes: langu age and words.

We use words to learn about relations among objects and activi-

ties and to remember them, to instruct others or to receive instruc-

tion from them, to influence people in one way or another. For the

words to be useful, the hearer must understand them in the same

sense that the speaker means them, that is, insofar as he associates

them with ,r"uily enough the same objects or skills. It's no use,

however, to tell i mur, lo r.ud or to add a column of figures if he

has never carried out these actions before, so that he doesn't have

these skills. It is no use to tell him to shoot the aardvark and not

the gnu if he has never seen either'
Further, for the sequences of words to be useful, they mult refer

to real or possible sequences of events. It's of no use to advise a

man to walk from tondon to New York in the forenoon immedi-

ately after having eaten a seven o'clock dinner.

Thus, in some way the meaningfulness of language depends not

only on grammaticat order and * u workable way of associating

words with collections of objects, qualities, and so on; it also de-

pends on the structure of the world around us. Here we encounter

a real and an extremely serious difficultv with the idea that we can

in some way translate sentences from one language into another

and accuratbly preserve the "meanitg'"

One obviour dim.ulty in trying to do this arises from differences

in classification. We can refer to either the foot or the lower legl

the Russians have one word for the foot plus the lower leg. Hurt-

garians have twenty fingers (or toes), for the word is the same for

either appendage.'To most of us today, a dog is a dog, male or

female, but *.ri of an earlier era distinguished sharply between a
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dog and a bitch. Eskimos make, it is said, many distinctions among
snow which in our language would call for descriptions, and for
us even these descriptions would have little real content of impor-
tance or feeling, because in our lives the distinctions have not been
important. Thus, the parts of the world which are common and
meaningful to those speakirg different languages are often divided
into somewhat different classes. It may br t*p6ssible to write down
in different languages words or simple sentences that specify exact$
the same range of experience.

There is a graver problem than this, however. The range of
experience to which various words refer is not common among all
cultures. What is one to do when faced with the problem of trans-
lating a novel containitg the phrase , 

o'tying one's shoelace," which
as we have noted describes a complicated action, into the language
of a shoeless people? An elaborate description wouldn't call up the
right thing at all. Perhaps some cultural equivalent (?) could be
found. And how should one deal with the fact that "he built a
house" means personal tree cutting and adzrng in a pioneer novel,
while it refers to the employment of an architect and a contractor
in a contemporary story?

It is possible to make some sort of translation between closely
related languages on a word-for-word or at least phrase-for-phrase
basis, though this is said to have led from 'oout of sight, out of
mind'o to "blind idiot." When the languages and cultures differ in
major respects, the translator has to think what the words mean
in terms of objects, actions, or emotions and then express this
meaning in the other language. It may be, of course, that the cul-
ture with which the language is associated has no close equivalents
to the objects or actions described in the passage to be translated.
Then the translator is really stuck.

How, oh how is the man who sets out to build a translating
machine to cope with a problem such as this? He certainly cannot
do so without in some way enabling the machine to deal effectively
with what we refer to as understanding. In fact, we see understand-
itg at work even in situations which do not involve translation
from one language into another. A screen writer who can quite
accurately transfer the essentials of a scene involvirg a dying uncle
in Omsk to one involving a dying father in Dubuque will repeatedly
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make comprete nonsense in trying t-o rephrase a simple technical

statement. This is clearly because he understands grief but not

science.
Having grappled painfully with the word meaning, we are now

faced with the word undersianding. This seems to have two sides.

If we understand algebra or calculus, we can use their manip,tl?-

tions to solve proble,irs we haven't encountered before or to supply

proofs of theorems we haven't seen proved. In this sense' under-

standing is manifested by u power to do, to create, not merely to

repeat. 
-To 

some degree, ut electronic computer which proves

theorems in mathe ̂iti"ul logic which it has not encountered be-

fore (as computers can be piogrammed to do) could pe+ap.s be

said to understand the subject. But there is an emotional side to

understanding, too. when we can prove a theorem in several ways

and fit it togeiher with other theorems or facts in various manners'

when we can view a field from many aspects and see how it all fits

together, we say that we understat o the subject deepty. wg lttul
a warm and confident feeling about our ability to cope with it. of

course , &t one time or anothet most of us have felt the warmth

without manifesting the ability. And how disillusioned we were at

the critical test!
In discussing language from the point of view of information

theory, we havi drided-utotrg a ticle of words, through the imper-

fectly charted channels of g*-*ar and on into the obscurities of

*.urring and understanding. This shows us how far ignorance can

take one. It would be absuid to assert that information theory, or

anythirg else, has enabled us to solve the probleml of linguistics,

of meurring, of understanding, of philosophy, of life' At best' we

can perhai, ,uy that we are pushin g a little beyond the mechani-

cal constraintj of language and geiting at the amount of choice

that language affords.itrii idea s,rggests views concerning the use

and functio-n of language, but it does not establish them. The

reader may share *"y f,eely offered ignorance concerning these

matterr, oi he may prefer his own sort of ignorance'
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Wn wILL NEVER AGAIN understand nature as well as Greek
philosophers did. A general explanation of common phenomena
in terms of a few all-embracing principles no longer satisfies us.
We know too much. We must explain many things of which the
Greeks were unaware. And, we require that our theories harmonlze
in detail with the very wide range of phenomena which they seek
to explain. We insist that they provide us with useful guidance
rather than with ration altzations. The glory of Newtonian me-
chanics is that it has enabled men to predict the positions of planets
and satellites and to understand many other natural phenomena
as well; it is surely not that Newtonian mechanics once inspired
and supported a simple mechanistic view of the universe at large,
includirg life.

Present-day physicists are gratified by the conviction that all
(non-nuclear) physical, chemical, and biological properties of mat-
ter can in principle be completely and precisely explained in all
their detaif by known quantum l4ws, asJumirg only^the existence
of electrons and of atomic nuclei of various masses and charges.
It is somewhat embarrassing, however, that the only physical sys-
tem all of whose properties actually have been calculated exactly
is the isolated hydrogen atom.

Physicists are able to predict and explain some other physrcaL
phenomena quite accurately and many more semiquantitatively.
However, a basic and accurate theoretical treatment, founded on
electrons, nuclei, and quantum laws only, without recourse to

125
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other experimental data, is lacking for most common thermal,

mechaniial, electrical, magnetic, and chemical phenomena. Tiac-

irg complicated biological phenomena directly back to quantum

Rrit principles seems Jo difficult as to be scarcely relevant to the

real problems of biology. It is almost as if we knew the axioms of

an impor tant field of 
-mathernatics 

but could prove only a few

simple theorems.
Thus, we are surrounded in our world by u host of intriguing

problerns and phenomena which we cannot hope to_ relate through

br. universal theo{y, however true that theory may be in principle.

Until recently the problems of science which we comnonly asso-

ciate with the field of physics have seemed to many to be the most

interesting of all the aipects of nature which stitl puzzle us. Today,

it is hardlo find problems more exciting than those of biochem-

istry and physiology.
t U.tieve, however, that many of the problems raised by recent

advances in our technology are as challenging as any that face us.

What could be more excitirg than to explore the potentialities of

electronic computers in proving theorems or in simulating other

behavior we hive alwayJ thought of as "human"? The problems

raised by electrical communication are just as challenging. Accu-

rate measurements made by electrical means have revolutionized

physical acoustics. Studies carried out in connection with tele-

pftb"r transmission have inaugurated _a new era in the study of

speech and hearing, in which previously accepted, ideas of phys-

iology, phonetics, and liguistics have proved to be inadequate.

And-,-it is this chaotic and intriguirg field of much new ignorance

and of a little new knowledge to which communication theory

most directly applies.
If communicaiion theory, like Newton's laws of motion, is to be

taken seriously, it must give us useful guidance in connection with

problems of communicition. It must demonstrate that it has a

ieal and endurirg substance of understanding and power. As the

name implies, thir substance should be sought in the efficient and

accurate transmission of information. The substance indeed exists.

As we have seen, it existed in an incompletely understood form

even before Shannon's work unified it and made it intelligible.
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To deal with the matter of accurate transmission of information
we need new basic understanding, and this matter will be tackled
in the next chapter. The foregoirg chapters have, however, put us
in a position to discuss some challenging aspects of the efficient
transmission of information.

We have seen that in the entropy of an information source
measured in bits per symbol or per second we have a measure of
the number of binary digits, of off-or-on pulses, per symbol or per
second which are necessary to transmit a message. Knowirg this
number of binary digits required for encoding and transmission, we
naturally want a means of actually encoding messages with, at the
most, not many more binary digits than this minimum number.

Novices in mathematics, science, or engineering are forever de-
manding infallible, universal, mechanical methods for solving
problems. Such methods are valuable in proving that problems
can be solved, but in the case of difficult problems they are sel-
dom practical, and they may sometimes be completely unfeasible.
As an example, we may note that an explicit solution of the gen-
eral cubic equation exists, but no one ever uses it in a practical
problem. Instead, some approximate method suited to the type or
class of cubics actually to be solved is resorted to.

The person who isn't a novice thinks hard about a specific prob-
lem in order to see if there isn't some better approach than a
machine-like application of what he has been taught. Let us see
how this applies in the case of information theory. We will first
consider tlie case of a discrete source which produces a string of
symbols or charac0ers.

In Chapter V we saw that the entropy of a source can be com-
puted by examining the relative probabilities of occurrence of
various long blocks of characters. As the length of the block is
increased, the approximation to the entropy gets closer and closer.
In a particular case, perhaps blocks 5, or 10, or 100 characters in
length might be required to give a very good approximation to
the entropy.

We also saw that by dividing the message into successive blocks
of characters, to each of which a probability of occurrence can be
attached, and by encoding these blocks into binary digits by means
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of the Huffman code, the number of digits used per character

approaches the entropy as the blocks of characters are made longer

and longer.
Here indeed is our foolproof mechanical scheme. Why don't we

simply use it in all cases?
Tb see one reason, let us examine a very simple case. S,tppose

that an information source produces a binary digit, a 1 or & 0,

randomly and with equal probability and then follows it with the

same Oiglt twice agarr- before producing independently another

digit. The message produced by such a source might be:

0 0 0 1  1  1 0 0 0 1  1  I  1  1  1 0 0 0 0 0 0 1  1  I

Would anyone be foolish enough to divide such a message

successively into blocks of I ,2,3,4,5, etc., chatacters, compute

the probaUitities of the blocks, encode them with a Huffman code,

and note the improvement in the number of binary digits required

for transmissiorr? I don't know; it sometimes seems to me that there

are no limits to human follY.
Clearly, a much simplei procedure is not only adequate byt

absoluteiy perfect. Becam. of the repetition, the entropy is clearly

the same as for a succession of a third as many binary digits chosen

randomly and independently with equal probability of I or 0. That

is, it ts r/t binary digit per chiracter of the repetitious mess age. And,

we can transmit th; message perfectly efficiently simply by sendittg

every third character anO ietiing the recipient to write down each

received character three times.
This example is simple but important. It illustrates the fact that

we should look for natural structure in a mess age source, for salient

features of which we can take advantage.
The discussion of English text in Chapter IV illustrates this. We

might, for instan ce, transmit text merely as a picture by television

or facsimile. This would take many binary digits per character. We

would be providing a transmission system capable of sending not

only English text, but Cyrillic, Greek, Sanskrit, Chinese, and other

text, and pictures of landscapes, storms, earthquakes, and Marilyn

Monro" ur well. We would not be takirg advantage of the elemen-

tary and all-important fact that English text is made up of letters.

if we encod. ft glish text letter by letter, takitg no account of
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the different probabilities of various letters (and excluditg the
space), we need 4.7 binary digits per letter. If we take into account
the relative probabilities of letters, as Morse did, we need 4.14
binary digits per letter.

If we proceeded mechanically to encode English text more
efficiently, we might go on to encoding pairs of letters, sequences
of three letters, and so on. This, however, would provide for
encodirg many sequences of letters which aren't English words. It
seems much more sensible to go on to the next larger unit of
English text, the word. We have seen in Chapter IV that we would
expect to use only about 9 binary digits per word or 1'.7 binary
digits per character in so encoding English text.

If we want to proceed further, the next logical step would be to
consider the structure of phrases or sentences; that is, to take
advantage of the rules of grammar. The trouble is that we don't
know the rules of grammar completely enough to help us, and if
we did, a communication system which made use of these rules
would probably be impractically complicated. Indeed, in practical
cases it still seems best to encode the letters of English text inde-
pendently, using at least 5 bin ary digits per character.

It is, however, important to get some idea of what could be
accomplished in transmitting English text. To this end, Shannon
considered the following communication situation. Suppose we ask
a man, using all his knowledge of English, to guess what the next
character in some English text is. If he is right we tell him so, and
he writes the character down. If he is wrong, we may either tell
him what the character actually is or let him make further guesses
until he guesses the right character.

Now, suppose that we regard this process as taking place at the
transmitter, and say that we have an absolutely identical twin to
guess for us at the receiver, a twin who makes just the same mis-
takes that the man at the transmitter does. Then, to transmit the
text, we let the man at the receiver guess. When the man at the
transmitter guesses right, so will the man at the receiver. Thus, we
need send information to the man at the receiver only when the
man at the transmitter guesses wrong and then only enough infor-
mation to enable the men at the transmitter and the receiver to
write down the right character.
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Shannon has drawn a diagram of such a communication system,

which is shown in Figure VII- 1. A predictor acts on the original

text. The prediction of th. next letter is compared with the actual

letter. If an error is noted, some information is transmitted. At the

receiv er, aprediction of the next character is made from the already

reconstrucied text. A comparison involving the received signal is
carried out. If no error hai been made, the predicted character is

used; if an error has been made, the o'reduced text" information

coming in will make it possible to correct the error.

Of course, we don't hive such identical twins or any other highly

effective identical predictors. Nonetheless, a much simpler 91,
purely mechanical iystem based on this diagram lut been used in

irunrtttitting pictures. Shannon's purpose was different, however.

By using just one person, and not twins, he was able to find what

transmission rate would be required in such a system merely by

examining the errors made bt the one man in the transmitter

situation. The results are summed up in Figure V-4 of Chapter V.

A better prediction is made on the basis of the 100 preceding

letters than on the basis of the preceding 10 or 15. To correct the

errors in prediction, something between 0.6 and 1.3 binary digils

per chara^cter is required. ThiJ te[s us that, insofar as this result

is correct, the entropy of English text must lie between .6 and 1.3

bits per letter.
A discrete source of information provides a good example for

discussion but not an example of much practical importance in

communication. The reason ls that, by modern standards of elec-

trical communication, it takes very few binary digits or off-or-on

pulses to send English text. we have to hurry to speak a few

hundred words a minute, yet it is easy to send over a thousand

words of text over a telephone connection in a minute or to send

l0 million words a minuie over a TV channel, and, in principle if

not in practice, we could transmit some 50,000 words a minute over

COMPARISON COMPARISON ORIGINAL
TEXTREDUCED TEXT

Fig.VII-L
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a telephone channel and some 50 million words a minute over a
TV channel. As a matter of fact, in practical cases we have even
retreated from Morse's ingenious code which sends an E faster than
a Z. A teletype system uses the same length of signal for any letter.

Efficient encoding is thus potentially more important for voice
transmission than for transmission of text, for voice takes more
binary digits per word than does text. Further, efficient encodirg
is potentially more important for TV than for voice.

Now, a voice or a TV signal is inherently continuous as opposed
to English text, numbers, or binary digits, which are discrete.
Disregarding capitaltzatton and punctuation, an English character
may be any one of the letters or the space. At a given moment, the
sound wave or the human voice may have any pressure at all lying
within some range of pressures. We have noted in Chapter IV that
if the frequencies of such a continuous signal are limited to some
bandwidth B, the signal can be accurately represented by 28
samples or measurements of amplitude per second.

We remember, however, that the entropy per character depends
on how many values the character can assume. Since a continuous
signal can assume an infinite number of different values at a sample
point, we are led to assume that a continuous signal must have an
entropy of an infinite number of bits per sample.

This would be true if we required an absolutely accurate repro-
duction of the continuous signal. However, signals are transmitted
to be heard or seen. Only a certain degree of fidelity of reproduc-
tion is required. Thus, in dealing with the samples which specify
continuous signals, Shannon introduces a fidelity criterion. To
reproduce the signal in a way meeting the fidelity criterion requires
only a finite number of binary digits per sample or per second, and
hence we can say that, within the accuracy imposed by u particular
fidelity criterion, the entropy of a continuous source has a particu-
lar value in bits per sample or bits per second.

It is extremely important to reahze that the fidelity criterion
should be associated with long stretches of the signal, not with
individual samples. For instance, in transmitting a sound, if we
make each sample l0 per cent larger, we will merely make the
sound louder, and no dam age will be done to its quatity. If we make
a random error of l0 per cent in each sample, the recovered signal
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will be very noisy. Similarly, in picture transmission an error in

brightness or contrast which changes , smoothly Td gradually

urios the picture will pass unnoticed, but an eqyal but random

error differing from point to point will be intolerable.

We have seett that we can send a continuous signal by quantizing

each sample, that is, by allowing it to assume only certain pre-

assigned values. It appears that 128 values are sufficient for the

tranimission of telepttbne-quality speech or of pictures. We must

reaLize, however, that, in quantizing a speech signal or a piclu1e

signal sample by sample, we are proceeding I u u:ty unsophisti-

cated *urr.r, just as we are if we encode text letter by letter rather

than word by word.
The ttu-. hyperquantization has been given to the quantizalio."

of continuour-tigttuls of more than one sampl e at a time. This is

undoubtedly th; true road to efficient encoding of continuous

signals. One can easily ruin his chances of efficient encoding com-

pl-etely by quantizing ittr samples at the start. Yet, to hyperquantize

; conlitt.ro.rs signal is not easy. Samples are quantized independ-

ently in present pulse code modulation systems that carry telephone

conversitions from telephone office to telephone office and from

town to town, and in ltre digital switchirg systems that provide

much long distance switching. Samples are quantized independ-

ently in sending pictures back from Mars, Jupiter and farther

planets.'r 
In pulse code modulation, the nearest of one of a number of

standird levels or amplitudes is assigned to each sample. As an

example, if eight leveli were used, they might be equally spaced

as in i of Figure VII-2. The level representing the sample is thln

transmitted 6y r.ttding the binary number written to the right of it.

Some subtiety of encodit g can be used even in such a system.

Instead of the equally spaced amplitudes of Figure VII'2,a, we can

use quant izatioi levbls-which are close together for small signals

and farthe r apart for large signals, as shown in Figure VII-2b. The

reason for doirg this is, of course, that our ears are sensitive to a

fractional errorln signal amplitude rather than to an error of so

many dynes below or above average pressure or so many volts

posiiive or negative, in the signal. By such companding (compressing

ittr high ampiitudes at the transmitter and expanding them again
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at the receiver),l binary digits per sample can give a signal almost
as good as 1l binary digits would if the signal levels transmitted
were separated by equal differences in amplitude.

To send speech more efficiently than this, we need to examine
the characteristics both of speech and of hearing. After &[, we
require only enough accuracy of transmission to convince the
hearer that transmission is good enough.

Efficiency is not everything. A vocoder can transmit only one
voice, not two or more at a time. Also, vocoders behave badly
when one speaks in the presence of loud noise. Trying to transmit
the actual speech waveform more efficiently, or waveform decoding,,
avoids these probleffis, but 15,000-20,000 binary digits per second
are required for acceptable speech.

Figure VII-3 sho*s the wave forms of several speech sounds,
that is, how the pressure of the sound wave or the voltage repre-
senting it in a communication system varies with time. We see that
many of the wave forms, and especially those for the vowels (a
through d), repeat over and over almost exactly. Couldn't we
perhaps transmit just one complete period of variation and use it
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to replace several succeeding periods? This is very difficult, for it
is hard for a machine to determine just how long a period is in
actual speech. It has been tried. The speech reproduced is intelli-
gible but seriously distorted.

If speech is to be encoded efficiently, a much more fundamental
approach is required. We must know how great a variety of speech
sounds must be transmitted and how effective our sense of hearing
is in distinguishing among speech sounds.

The fluctuations of air pressure which constitute the sounds of
speech are very rapid indeed, of the order of thousands per second.
Our volunt ary control over our vocal tracts is exercised at a much
lower rate. At the most, we change the manner of production of
sounds a few tens of times a second. Thus, speech may well be
(and is) simpler than we might conclude by examining the rapidly
fluctuating sound waves of speech.

What control do we exercise over our vocal organs? First of all,
we control the production of voiced sounds by our control over our
vocal cords. These are two lips or folds of muscular tissue attached
to a cartilaginous box called the larynx, which is prominent in man
as the Adam's apple. When we are not giving voice to soutrd, these
are wide open. They can be drawn together more or less tightly,
so that when air from the lungs is forced through them they ernit
a sound something like a Bronx cheer. If they are held very tight,
the sound has a high pitch; if they are more relaxed, the sound has
a lower pitch.

The pulses of air passing the vocal cords contain many frequen-
cies. The mouth and lips act as a complex resonator which empha-
sizes certain frequencies more than others. What frequencies are
emphasized depends on how much and at what position the tongue
is raised or humped in the mouth, on whether the soft palate opens
the nasal cavities to the mouth and throat, and on the opening of
the jaws and the position of the lips.

Particular sounds of voiced speech, which includes vowels and
other continuents, such as m and r, are formed by exciting the vocal
cords and giving particular characteristic shapes to the mouth.

Stop consonents, or plosives, such as p, b, g, t, are formed by
stopping off the vocal passag e at various points with the tongue
or lips, creatitg an air pressure, and suddenly releasing it. The vocal
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cords are used in producing some of these sounds (b, for instance)

and not in producing others (p, for instance).
Fricatives, such aJ r and sh, are produced by the passage of air

through various constrictions. Sometirnes the vocal cords are used

as well (in a zh sound, &s Ln azvre).
A specification of the movements of the vocal organs would be

much more slowly changirg than a description of the sound pro-

duced. May this not be i clue to efficient encoditg of speech?

In the early thirties, long before Shannon's work on information

theory, Homer l)udley of the Bell Laboratories invented such a

form of speech transmission, which he called the vocoder (from

voice coder). The transmitting (analyzer) and receivitg (synthe-

sizer) units of a vocoder are illustrated in Figure VII-4.

In the analyzer, an electrical replica of the speech is fed to 16

filters, each oi which determines tfie strength of the speech signal

in a particular band of frequencies and transmits a signal to the

synthesizer which gives thiJ information. In addition, an analysis

is made to determine whether the sound is voiceless (s, f ) or voiced

(o, u) and, if voiced, what the pitch is.
At the synthesrzer, if the sound is voiceless, a hissing noise is

produced; lf the sound is voiced a sequence of electrical pulses is

produced at the proper rate, corresponding to the puffs of air

passing the vocal cords of the speaker.L 
The hiss or pulses are fed to an affay of filters, each pas.sing a

band of frequ^encies corresponding to a particular filter in the

analyzer. The amount of sound passitg through a particular filter

in the synthesizer is controlled by the output of the corresponding

analyz.t ntt.r so as to be the same as that which the analyzer filter

indiiates to be present in the voice in that frequet c-y. range.

This process results in the reproduction of intelligible speech.

In effect, the analyzer listens to and analyzes speech, and then

instructs the synth-esizer, which is an artificial speaking machine,

how to say th;words all over again with the very pitch and accent

of the speaker.
Most vocoders have a strong and unpleasant electrical accent.

The study of this has ted to new and important ideas concerning

what determines and influences speech quality; we cannot afford

time to go into this matter here. Even imperfect vocoders can be
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very useful. For instance, it is sometimes necess ary to resort to

enciphered speech transmission. If one merely direltly reduce,s

rp.r.tt to bin-ary digits by pulse code modulation, 30,000 to 60,000

Uittuty digits p.t seiond-must be sent. By using a vocoder, speech

can be sent with about 2,400 binary digits per second.
The channel vocoder of Figure VII-4 is only one example of a

large class of devices (we may call them all vocoders, if we wish)

thai analyze speech and transmit signals which drive a speaking

machine. In linear predictive encoding the analysis finds slowly

varying coefficients that predict the next speech sample as a

weryh6d sum of several past samples. An error signal can be sent

as well, which is used to correct the output of the speaking machine.

Linear predictive coding gives very good speech if 9,600 binary

digits p"t second are transmitted, intelligible speech at 2,400 binary

dilits per second, and barely intelligible speech at 600 binary

digits per second.
Various other parameters of speech can be derived from the

linear predictive coefficients. Th; channel signals .characteristic
of the ihannel vocoder of Figure VII-4 can be derived from the

linear predictive coefficients. So can the resonant frequencies of

the vobal tract characteristic of various speech sounds. These

resonant frequencies are called form:ants. When we transmit these

resonant frequencies and use them to reconstruct speech we say

we have a formant tracking vocoder. It has been proposed to

derive parameters describing the shape of the vocal tract and to

transmil these. If, onty if, wJ could use the coefficients to reco gnize

speech sounds, or phonemes, and merely transmit their labels' we

would have a phoneme vocoder that would transmit speech with

the efficiency of text.
Let us consider the vocoder for a moment betbre leaving it.

We note that transmission of voice using even the most economi-

cal of vocoders takes many more binary digits per word than

transmission of English text. Partly, this is because of the technical

difficulties of analyzing and encodittg speech as opposed to print.
partly, it is because, in the case of spegth, we are actually trans-

mitting information about speech quality, pitch, and stress, and

accent as well as such information as there is in text.. ln other



Efficient Encoding 139

words, the entropy of speech is somewhat greater per word than
the entropy of text.

That the vocoder does encode speech more efficiently than other
methods depends on the fact that the configuration of the vocal
tract changes less rapidly than the fluctuations of the sound waves
which the vocal tract produces. Its effectiveness also depends on
limitations of the human sense of hearing.

From an electrical point of view, the most complicated speech
sounds are the hissing fricatives, such as sh (,f of Figure VII-3) and
s ( S of Figure VII-3). Furthermore, the wave forms of two s's
uttered successively may have quite a different sequence of ups and
downs. It would take many binary digits per second ro transmit
each in full detail. But, to the ear, one s soundr just like another
if it has in a broad way the same frequency content. Thus, the
vocoder doesn't have to reproduce the s sound the speaker uttered;
it has merely to reproduce an s sound that has roughly the same
frequency content and hence sounds the same.

We see that, in transmitting speech, the royal road to efficient
encoditg appears to be the detection of certain simple and impor-
tant patterns and their recreation at the receivirg end. Because of
the greater channel capacity required, efficient encoding is even
more important in TV transmission than in speech transmission.
Can we perhaps apply a similar principle in TV?

The TV problem is much more difficult than the speech trans-
mission problem. Partly, this is because the sense of sight is inher-
ently more detailed and discriminating than the sense of hearing.
Partly, though, it is because many sorts of pictures from many
sources are transmitted by TV, while speech is all produced by the
same sort of vocal apparatus.

In the face of these facts, is some vocoder-like way of trans-
mitting pictures possible if we confine ourselves to one sort of
picture source, for instance, the human face?

One can conceive of such a thing. Imagine that we had at the
receiver a sort of rubbery model of a human face. Or we might have
a description of such a model stored in the memory of a huge
electronic computer. First, the transmitter would have to look at
the face to be transmitted and "make up" the model at the receiver
in shape and tint. The transmitter would also have to note the
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sources of light and reproduce these in intensity and direction at
the receiver. Then, as the person before the transmitter talked, the
transmitter would have to follow the movements of his eyes, lips
and jaws, and other muscular movements and transmit these so
that the model at the receiver could do likewise. Such a scheme
might be very effective, and it could become an important inven-
tion if anyone could specify a useful way of carrying out the
operations I have described. Alas, how much easier it is to say what
one would like to do (whether it be making such an inventior,
composing Beethoven's tenth symphor/, or painting a masteqpiece
on an assigned subject) than it is to do it.

In our day of unlimited science and technology, people's unful-
fllled aspirations have become so important to them that a special
word, popular in the press, has been coined to denote such dreams.
That word is breakthrough. More rarely, it may also be used to
describe something, usually trivial, which has actually been
accomplished.

If we turn from such dreams of the future, we find that all actual
picture-transmission systems follow a common pattern. The picture
or image to be transmitted is scanned to discover the brightaess at
successive points. The scanning is carried out along a sequence of
closely spaced lines. In color TV, three images of different colors
are scanned simultaneously. Then, at the receiver, a point of light
whose intensity varies in accord with the signal from the transmitter
paints out the picture in light and shade, followitg the same line
pattern. So far all practical attempts at efficient encoding have
started out with the signal generated by such a scanning process.

The outstanding efficient encoding scheme is that used in color
TV. The brightness of a color TV picture has very flne detail; the
pattern of color has very much less detail. Thus, color TV of almost
the same detail as monochrome TV can be sent over the same
channel as is used for monochrome. Of course, color TV uses an
analog signal; the picture is not reduced to discrete on-or-offpulses.

Increasingly, pulse code modulation will be used to transmit all
sorts of signals, includiog television signals. The picture to be trans-
mitted will be scanned in a conventional wzl/, but its brightness
will be encoded as a succession of binary numbers that specify
the brightnesses of a succession of discrete picture elements or
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pixels that lie along each scanning line. This is how pictures were
sent back from Mars by the Mariner lander, and from Jupiter and
its moons by the Voyager spacecraft.

All recent work aimed at encoding television efficiently is digital.
It deals with successions of binary numbers that represent suc-
cessive pixel brightnesses.

In large parts of a TV picture the brightness changes gradually
and smoothly from pixel to pixel. In such areas of the picture, a
good prediction can be made of the brightness of the next pixel
from the brightness of preceding pixels in the same line, and
perhaps in the preceding line. At the receiver we need know only
the error in such a prediction, so we need transmit only the small
difterence between the true brightness and a brightness which we
predic t at the receiver as well as at the transmitter. Of course, in
"busy" portions of the picture, prediction will be poor, and the
brightness difterence that must be sent will be great.

We can transmit brightness differences most efficiently by using
a Huffman code, with short code words for more frequently occur-
ring small brightness differences and long code words for less
frequently occurring, large brightness differences. If we do this,
the binary digits of the coded differences will be generated at an

I uneven rate, at a slow rate when smooth portions of the picture are

I scanned and at a faster rate when busy portions of the picture are

I scanned. In order to transmit the binary digits at a constant rate,

I the digits must be fed into a buffer, which stores the incoming

I digits and feeds them out at a constant rate equal to the average

I rate at which they come in. A similar buffer must be used at the

I receiving end.

I ny means of such intraframe encoding, the number of binary

I digits per second needed to transmit a good TV picture can be

I reduced to V2 to Vs of the number of binary digits used in initially

I encoding the pixel brightnesses.

I Much greater gains can be made through interframe encoding, in

| *hich the pixel brightnesses of the whole previous TV picture are

I stored and used in predicting the brightness of the next pixel to

I bt sent. This is particularly effective in transmitting pictures of

I people against a fixed background, for the brightnesses of pixels in

I the background don't change from frame to frame.
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Even more elaborate experimental schemes make use of the fact

that when a figure in front of a background moves, it moves as a

whole. Thus, tf,. brightnesses of the pixels in the moving figure can

be predicted from the brightnesses of pixels which are a constant

distance away in the previous frame.
If each piiel of a tV picture is represented by 8 binary digits ( a

very gooo picture), th; picture can be transmitted by sending

around 100 million binary digits per second. By intraframe en-

coding this can be reduced to perhap s 32 million. With interframe

codin! this has been reduced io as iittle as 6 million. A reduction

to 1.5 million seems conceivable for such pictures as the head of a

person against a fixed background.
The yansform method iJ another approach to the efficient trans-

mission of TV pictures. In the transform method, the pattern of

pixel brightn"rr", that make up the Tv picture, or some portion of

it, is r.prrrented as the sum of a chosen set of standardized pat-

terns whose amplitudes are transmitted with chosen accuracies.

Revie*i"g wliat has been said, we see that there are three im-

portant priniiples in encoding signals efficiently: (l) Don't encode
^ttr. 

signal or. sample or one chiaracter at a time; encode a con-

siderable stretch of-a signal at atime (hyperquantization); (2) take

into account the timitations on the source of the signal; (3) take

into account any inabilities of the eye or the eat to detect errors

in a reconstruction of the signal.
The vocoder illustrates ther. principles excellently. Th: fil.

temporal structure of the speech wave is not examined in detail'

Instead, & description specifying the average intensities over certain

ranges of frequencies ii transmitted, together with a signal which

tells whethu ih, speech is voiced or unvoiced and, if it is voiced,

what its pitch is. This description of a signal is efficient because the

vocal orgurs donot chang. porition rapidly i" producing speech.

At the receiver, the vocodit g.nerates a speech signal which doesn't

resemble the original sperJtt signal in fine detail but sounds like

the original speJch signat, beciuse of the natural limitations of

our hearing.
The vocoder is a sort of

devices. Next perhaPs comes
paragon of efficient transmission

rblor tv, in which the variations of
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color over the picture are defined much less sharply than vartations
of intensity are. This takes advantage of the eyes' inability to see
fine detail in color patterns.

Beyond this, the present art of communication has had to make
use of means which, because they do not encode long stretches of
signal at a time, must, according to communication theory, be
rather inefficient.

Still, efficient encodirg is potentially important. This is especially
so in the case of the transmission of relatively broad-band signals
(TV or even voice signals) over very expensive circuits, such as
transoceanic telephone cables.

No doubt much ingenuity will be spent in efficient encoding in
the future, and many startling results will be attained. But we
should perhaps beware of going too far.

Imagine, for instance, that we send English text letter by letter.
If we make an error in sending a few letters we can still make some
sense out of the text:

Hore I hove reploced a few vowols by o.
We can even replace the vowels by x's and read with some

facility:
Hxrx X hxvx rxplxcxd thx vxwxls bx x.
It is more efficient to encode English text word by word. In this

case, if an error is made in transmission, we are not tipped off by
finding a misspelled word. Instead, one word is riplaced by
another. This might have embarrassing results. Srppose it changed
"The President is a good Republican" to "The President is a good
Communist" (or donkey, or poltroon, or many other nouns).

We might still detect an error by the fact that the word was
inappropriate. But suppose we used a more refined encodi.g
scheme that could reproduce grammatical utterances only. Then
we would have little chance of detecting an error in transmission.

English text, and most other information sources are redundant
in that the messages they produce give many clues to the recipient,
A few errors caused by replacirg one letter by another don't
destroy the message because we can infer it from other letters
which are transmitted correctly. Indeed, it is only because of this
redundancy that anyone can read my handwriting. When a con-
tinuous signal is sent a sample at aii*., a few eirors in sample
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amplitude result in a few clicks in sound transmission or in a few

specks in picture transmission-
Our ideil so far has been to remove this redundancy, so that we

transmit the absolutely minimum number of clues by means of

which the message can be reconstructed. But we see that if we do

this with perfect success, any error in transmission will send, not

a distorted message, bu t a fa\se and misleading message. If we fall

a little short of the ideal, an error may produce merely a terrible

garble.
We all know that there is some noise in electrical communication

-ahiss in the background on radio and a little snow at least in

TV. That such noise is an inevitable fact of nature we must accept-

Is this going to vitiate in principle our grand plan to encode the

messag.r nJm a signal source inio scarcely more binary digits than

the entropy of the source?
This islhe subject that we will consider in the next chapter.



CHAPTER VIII The Noisy
Channel

Ir IS HARD To puT oNESELF in the place of another, and,
especi ally, it is hard to put oneself in the place of a person of an
earlier duy. What would a Victorian have thought of present-day
dress? Were Newton's laws of motion and of gravitation as aston-
ishing and disturbing to his contemporaries as Einstein's theory
of relativity appears to have been to his? And what is disturbing
about relativity? Present-day students accept it, not only without
a murmur, but with a feeling of inevitability, as if any other idea
must be very odd, surprising, and inexplicable.

Partly, this is because our attitudes are bred of our times and
surroundings. Partly, in the case of science at least, it is because
ideas come into being as a response to new or better-phrased
questions" We remember that accordirg to Plato, Socrates drew a
geometrical proof from a slave simply by means of an ingenious
sequence of questions. Those who have not seriously asked them-
selves a pafticular question are not likely to have come upon the
proper answer, and, sometimes, when the question is phrased with
the answer in mind, the answer appears to be obvious.

Those interested in communication have been aware from the
very beginnitg that communication circuits or channels are im-
perfect. In telephony and radio, we hear the desired sign al against
a background of noise, which may be strong or faint and which
may vary in quality from the cracklirg of static to a steady hiss.

t45
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In TV, the picture is overlaid faintly or strongly with an ever-

changing granular 'osnow." In teletypewriter transmission, the

received character may occasionally differ from that transmitted'

Suppose that one had questioned a communication engineer

aboui this general problem of "noise" in 1945. one might have

asked, ..What can one do about noise?" The engineer might have

answered, .,you can increase the transmitter power or make the

receiver less noisy. And be sure that the receiver is insensitive to

disturbances with frequencies other than the signaf frequel:t..:."

One might have peisisted, o'Can't one do anything else?" The

engine., ,iight hav^. urrr*ered, 'owell by using frequency mody-

latlon, which takes a very large band width, one can reduce the

effect of noise."
Suppose, howevero that one had asked, "In teletypewriter sys-

tems, noise may cause some received characters to be wrong; how

can one guard against this?" The engineer could and might perhaps

have answered,r'I krrow that if I use five off-or-on pulses to repre-

sent a decimal digit and assign to the decimal digits only such

sequences as all hive two ons and three offso I can often tell when

an error has been made in transmissioo, for when errors are made

the received sequence may have other than 2 ons."

One might have pursued the matter further with, "If the teletype-

writer cirduit does cause errors is there any way that one can get

the correct mess age to the destination?" The engineer might have

answered, .,I suppor. you can if you repeat it enough times, but

that's very wasteful. You'd better fix the circuit."
Here we are getting pretty close to questions that just hadn't

been asked befoie Shtnnon asked them. Nonetheless, let us go on

and imagine that one had said, "S,rppose that I told you that by

propert/encoding my message, I can send it over even a noisy

Lttuttttei with u compfetely r,egtigible fraction of errors' a fraction

smaller than any assignuUt. uatni. Suppose that I told you that, if

the sort of noise in t[e channel is known and if its magnitude is

known, I can calculate just how many characters I can send over

the channel per second'and that, if I send any number fewer than

this, I can do so virtually without error, while if I try to send more'

I will be bound to make errors."
The engineer might well have answered, "You'd sure have to
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show me. I never thought of things in quite that way before, but
what you say seems extremely improbable. Why, every time the
noise increases, the error rate incteases. Of course, repeating a
message several times does work better when there aren't too many
errors. But, it is always very costly. Maybe there's something in
what you sa/, but I'd be awfully surprised if there was. Stiil,1he
way you put it . . ."

Whatever we may imagine concerning an engineer benighted in
the days of error, mathematicians and engineers who have survived
the transition all feel that Shannon's results concerning the trans-
mission of information over a noisy channel were and still are very
surprising. Yet I have known an intelligent layman to see nothing
remarkable in Shannon's results. What is one to think ofthis?

Perhaps the best course is merely to describe and explain the
problem of the noisy channel as we now understand it, raisirg and
answering questions that, however natural and inevitable they now
seem, belong in their trend and content to the post-shannon era.
The reader can be suqprised or not as he chooses.

So far we have discussed both simple and complex means for
encoditg text and numbers for efficient transmission. We have
noted further that any electrical signal of limited band width W
can be represented by 2W amplitudes or samples per second,
measured or taken at intervals | /2W seconds apart. We have seen
that, by means of pulse code modulation, we can use some num-
ber, aroun d 7 , of binary digits to represent adequately the ampli-
tude of any sample. Thus, by using pulse code modulation or some
more complicated and more efficient scheme, we can transmit
spee_c-h or picture signals by means of a sequence of binary digits
or off-or-on or positive-or-negative pulses of current.

All of this works perfectly if'the recipient of the message receives
the same signal that the sender traqsmits. The actual facts are dif-
ferent. Sometimes he receives a d when a I is transmitted, and
sometimes he receives a I when a 0 is transmitted. This can hup-
p:tt through the malfunction of electrical relays in a slow-speeO
telegraph circuit or through the malfunction of vacuum tubes or
transistors in a higher speed circuit. It can also happen because of
interfering signals or noise, either noise from man-made apparatus,
or noise from magnetic storms.
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x

3 4 5

F ig .V I i l - I

We can easi$ see in a simple case how elrors can occur because

of the admixture of noise with a signal. Imagine that we want to

send a large number of binary digits, 0 or 1, per second over a wire

by means of an electrical signal. we may represent:* signal 99i-
veying these digits by the succession of sampl-es s of Figure VIII-I,

e a c h o f w h i c h w i l l b e + 1 o r _ l . H e r e w e h a v e a S u c c e s s i o n o f
positive and negative voltages which represent the digits 1 0 1 1

1 0 0 1 0 .
Now suppose a random noise voltage, which may be either

positive or negative, is added to the signal. we can represent this

also by a ,rrr-lrr of noise samples n ofrigure vIII-l taken simul-

taneously with the signal samples. The iignal p-lus the noise is

obtain.o uy adding th; signal ano rhe noise samples and is shown

ass  +n inF igu reV I I I - I .
If we interpret a positive signal-plus-noise in the received mes-

sage as a I and a negative signit-plus-noise as a 0, then the received

s+n

n

ERRORS

POSITION
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message will be represented by the digits r of Figure VIII- l. Thus,
errors in transmissior, as indicated, occur in positions 2,3, and'1- .

The effect of such errors in transmission can range from annoy-
itg to dangerous. In speech or picture transmission by means of
simple coding schemes, they result in clicks, hissing noises, or
'osnow." ff more efficient, block encoding schemes are used (hyper-
quantization) the effects of errors will be more pronounced. In
general, however, we may expect the most dangerous effects of
errors in the transmission of text.

In the transmission of English text by conventional means, errors
merely put a wrong letter in here and there. The text is so redun-
dant that we catch such errors by eye. However, when type is set
remotely by teletypewriter signalso &S it is, for instance, in the
simultaneous printirg of news magazines in several parts of the
country, even errors of this sort can be costly.

When numbers are sent errors are much more serious. An error
might change $ 1,000 into $9,000. If the error occurred in a pro-
gram intended to make an electronic computer carry out a com-
plicated calculation, the error could easily cause the whole calcu-
lation to be meaningless.

Further, we have seen that, if we encode English text or any other
signal very efficiently, so as largely to remove the redundancy, an
error can cause a gross change in the meaning of the received
signal.

When errors are very important to us, how indeed may we guard
against them? One way would be to send every letter twice or to
send every binary digit used in transmittin g a letter or a number
twice. Thus, in transmitting the binary sequence I 0 I 0 0 I I 0 l,
we might send and receive as follows:

s e n t  I  1 0 0 1  1 0 0 0 0 1  I  I  1 0 0  I  I
received I I 0 0 I I 0 0 0 I I I I I 0 0 I I

X
error

For a given rate of sending binary digits, this will cut our rate of
transmitting information in half, for we have to pause and retrans-
mit every digit. However, we can now see from the received signal
than an error has occurred at the marked point, because instead
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of apair of like digits,0 0 or I l, we have received a pair of unlike

digiis, 0 l. We don't know whether the correct, transmitted pair

was 0 0 or I l. We have detected the error, but we have not

corrected tt.
If errors aren't too frequent, that is, if the chance of two errors

occurring in the transmission of three successive digits is negliBlblg'

we can correct as well as detect an error by transmittitg each digit

three times, as follows:

s e n t  1 1 1 0 0 0 1 1 1
r e c e i v e d  1 1 1 0 0 0 1 0 1

EITOT

We have now cut our rate of transmission to one-third, because we

have to pause and retransmit each digit twice. However, we can

now correct the error indicated by thL fact that the digits in the

indicated group I 0 I are not all the same. If we assume that there

was only Jr. ,r.o, in the transmission of this group of digits, then

the transmitted group must have been I 1 1, representing 1, rather

than 0 0 0, rePresenting 0.
we see that u ,r.ry siriple scheme of repeatirg transmitted digits

can detect or even correct infrequent errors of transmission' But

how costly it isl If we use this m-eans of error correction or detec-

tion, even when almost all of the transmitted digits are correct we

have to cut our rate of transmission in half by repeating digits in

order just to detect errors, and we have to cut our rate of trans-

mission to one-third by transmitting each digit three times in order

to get error correction. Moreourt, these schemes won't work if

errors are frequent enough so that more than one will sometimes

occur in the tfansmission of two or three digits.

clearly, this simple approach will never lead to a sound under-

standing of the possibil y of error correction. What is required is

a deep and po*Lrful maihematical attack. This is just what Shan-

non provided in discovering and provinq lir 
fundamental theorem

for the noisy channel. It is the course of his reasonittg that we are

about to follow.
In formulating an abstract and

we will deal with the case of a

0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 l l 1 l l l

general model of noise or errors'
discrete communication sYstem
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which transmits some group of characters, such as the digits from
0 to 9 or the letters of the alphabet. For convenience, let us consider
a system for transmitting the digits 0 through 9. This is illustrated
in Figure VIII-Z. At the left we have a number of little circles
labeled with the digits; we may regard these little circles as push-
buttons. To *he right we have a number of little circles, again
labeled with the digits. We may regard these as lights. When we
push a digit button at the transmitter to the left, some digit light
lights up at the receiver to the right.

If our communication system were noiseless, pushing the 0
button would always light the 0 light, pushing the I button would
always light the I light, and so on. However, in an imperfect or
noisy communication system, pushirg the 4 buttor, for instance,
may light the 0 light, or the I light, or the zlight, or any other light,
as shown by the lines radiatirg from the 4 button in Figure VIII-2.
In a simple, noisy cornmunicition system, w€ can say that when
we press a button the light which lights is a matter of chance,

Fig. VIII-2
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independent of what has gon:-before and that, if the 4 button is

p.rrrrd, there is some pto-bubility p+(6) that the 6 light will light'

and so on.
If the sender can't be sure which light will light when he presses

a particular button, then the recipient of.the message can't be sure

which button was pressed whett a particular light lights. T{u It
indicated by the urio*, from light 6to various buttons on the left'

If, for instance, light 6 lights, tf,ere is some probability po @ thlt

button 4 was pr.ir.d, arid so on. only for a noiseless system will

ps(6) be unity and ps(4), P69):-etc', be zeto'
' 

The diagrlm or Fig;;; vfir-z would be too complicated if all

possibre arrows were fut in, and the number of ptgb_ubilities is too

greatto list, but I beiieve that the general idea of the degree and

nature of uncertainty of the character received when the sender

tries to send a particular character and the uncertainty of the

character sent when the recipient receives a particular character,

have been illustrated. Let us now consider this noisy communica-

tion channel in a rather general way. In doing so we will represent

by 
" 

all of the characters sent and ai y all of the characters received'

The characters x arejust the characters generated by the message

source from which th; message comes. If there are m of these

characters and if they occur independently with probabilities p(x),

then we know fro* ittupter v that the entropy H(x) of the message

source, the rate at whi.h the message source generates information,

must be m

H(x)

x -  I

we can regard the output of the device, which we designate by

y, as anothei message source. The number of lights need not be

equal to the numbei of buttons, but we will assume that it is, so

that there are m li$rts. The entropy of the output will be
m

H (Y)

y : l
we note that while H(*i depends only on the input to the com-

munication chann el, H() depinds both on the rnput to the channel

and on the errors madi in tiansmission. Thus, the probability of
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receivitg a 4 if nothirg but a 4 is ever sent is different from the
probability of receiving a 4 if transmitting buttons are pressed
at random.

If we imagine that we can see both the transmitter and the
receiver, we can observe how often certain combinations of x and
/ occur; s&), how often 4 is sent and 6 is received. Or, knowing
the statistics of the message source and the statistics of the noisy
channel, we can compute such probabilities. From these we can
compute another entropy.

m m
H ( x ,  y ) -

X : l  x - l
This is the uncertainty of the combination of x and y.

Further, we can s&), suppose that we know x (that is, we know
what k.y was pressed). What are the probabilities of various lights
lighting (as illustrated by the arrows to the right in Figure VIII-2X
This leads to an entrop),

( m
HrU) =

x : l y - l
This is a conditional entropy of uncertainty. Its form is reminis-

cent of the entropy of a finite-state machine. As in that case, we
multiply the uncertainty for a given condition (state, value of x)
by the probability that that condition (state, value of x) will occur
and sum over all conditions (states, values of x).

Finally, suppose we know what light lights. We can say what the
probabilities are that various buttons were pressed. This leads to
another conditional entropy

n x m
H u @ ) -

y - l x - l
This is the sum over y of the probability that,y is received times
the uncertainty that x is sent when,y is received.

TheSe conditional entropies depend on the statistics of the
message source, because they depend on how often x is transmitted
or how often 7 is received, as well as on the errors made in
transmission.

(8.3)

(8.4)

(8.5)
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H(x,y) = H(x) + H-(Y)

The entropies listed above are best interpreted as uncertainties

involving th; characters generated by the message sorlrce and the

characters received by the recipient. Thus:

H(x)is the uncertainty as to x, thatis, as to which character will

be transmitted.
H(y)is the uncertainty as to which character will be received

in the case of a given message source and a given communication

channel.
H(x,/) is the uncertainty as to when x will be transmitted and

y received.
Hr(y)is the uncertainty of receivingT wherl x is transmitted' It

is the average uncertainty of the sender as to what will be received'

H u@) is the uncertuirrty that x was transmitted when 7 is

received. It is the average uncertainty of the message recipient as

to what was actuallY sent.
There are relations among these quantities:

That is, the uncertainty of sending x and receiving y is .the
uncertainty of sending 

" 
pt.* the uncJrtainty of receiving 7 when

x is sent.

(8.6)

(8.7)H(x,y)  :  H(Y)  + Ho@)

That is, the uncertainty of receiv Ln| y and sending x is -the
uncertainty of receivingT itor the onc.riainty that x was sent when

/ was received.
We see that when H-(y) is zero, Hr(x) must be zero, and H(y)

is then just H(x).This is the case or the noiseless channel, for

which the entropy of the received signal ir just the. same as the

entropy of the transmitted signal. ThJsenderknows just what will

be received, and the recipiJnt of the message knows just what

was sent '  
-  ̂  -  t -^r^t - r  A^ *a. ' ,L in l r  o.r tnhnl  * ,  

' . t ted 
when a

The uncertainty as to which symbo.l was transmt

given symbol is received, that rs, H o(x) seems a natural measure

of the information lost in transmission. Indeed, this proves to be

the case, and the quanttty Ho(x) has been given a special-name;

it is called the equivocation of the communication channel' If we
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take H(x) and H u@) as entropies in bits per second, the rate R of
transmission of information over the channel can be shown to be,
in bits per second,

R - H(x) Hu@)

That is, the rate of transmission of information is the source rate
or entropy less the equivocation. It is the entropy of the message
as sent less the uncertainty of the recipient as to what message
was sent.

The rate is also given by

(8.8)

(8.9)

(8.10)

That is, the rate is the entropy of the received signal 7 less the
uncertainty that y was received when )c was sent. It is ttre entropy
of the message as received less the sender's uncertainty as to what
will be received.

The rate is also given by

The rate is the entropy of x plus the entropy of y less the uncer-
tainty of occurrence of the combination x and y. We will note from
8.3 that for a noiseless channel, since p (x,/) is zero except when
x - /, and H(x, y) = H(x) - H(y).The information rate is just
the entropy of the information source, H(x).

Shannon makes expression 8.8 for the rate plausible by means
of the sketch shown in Figure VIII-3. Here we assume a system in
which an observer compares transmitted and received signals and
then sends correction data by means of which the erroneous
received signal is corrected. Shannon is able to show that in order
to correct the message, the entropy of the correction signal must
be equal to the equivocation.

We see that the rate R of relation 8.8 depends both on the
channel and on the message source. How can we describe the
capacity of a noisy or imperfect channel for transmitting informa-
tion? We can choose the message source so as to make the rate R
as large as possible for a given channel. This maximum possible
tate of transmission for the channel is called the channel capacity
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CORRECTION DATA

Fig.VIII-3

c. shannon,s fundamental theorem for a noisy channel involves

the channel caPacitY C. It saYs:

Let a discrete channel have a capacity c and a discrete source the

entropy per second H. If H < c theri exists a coding system such that the

output of the source can be transmitted over the channel with an arbitrarily

small frequency of errors (or an arbitrarily small equivocation). If H > c

it is porrible tt encode the source so that the equivocation is less than

H - C * €, where e is arbitrarily small. There is no method of encoding

which gives an equivocation less than H - c.

This is a precise statement of the result which so astonished

engine"r, urd mathematicians. As errors in transmission become

*J* probable, that is, as they occur more frequentlyl the channel

capacity u,, defined by Shannon -glldually 
goes down' For instance'

if our system transmits binaty digits and if some are in error, the

chann"i ,upacity c, that is, n-umber of bits of information we can

send per ui"uty digit transmitted, decreases. But the channel

capacity d..reases giaduatly as the errors in transmission of digits

become more freqGnt. To achieve transmission with as few errors

as we may care to specify, we have to reduce our rate of trans-

mission ,o that it is equal-to or less than the channel capaclty.

How are we to urhiru, this result? we remember that in effi-

ciently encoding an information source, it is necess aty to 9*p
-urry characters together and so to encode the messa Ee a 1o."g

block of characters ui utime. In making very efficient use of a noisy

channel, it is also necess ary to deal *ittt sequences of received

OBSERVER

CORRECTING
DEVICER E C E I V E RTRANS-

MITTER
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characters, each many characters long. Among such blocks, only
certain transmitted and received sequences of characters will o.r.r,
with other than a vanishing probability.

In proving the fundamental theorem for a noisy channel, Shan-
non finds the average frequency of error for all possible codes (for
all associations of particular input blocks of characters with partic-
ular output blocks of characters), when the codes are chosen at
random, and he then shows that when the channel capacity is
greater than the entropy of the source, the error rate averaged over
all of these encodirg schemes goes to zero as the block length is
made very long. If we get this good a result by averagirg over all
codes chosen at randoffi, then there must be some one of the codes
which gives this good a result. One information theorist has char-
acterrzed this mode of proof as weird. It is certainly not the sort
of attack that would occur to an uninspired mathematician. The
problem isn't one which would have occurred to an uninspired
mathematician, either.

The foregoitg work is entirely general, and hence it applies to
all problems. I think it is illuminating, however, to return to the
example of the binary channel with errors, which we discussed
early in this chapter and which is illustrated in Figure VIII- l, and
see what Shannon's theorem has to say about this simple and
common case.

Suppose that the probability that over this noisy channel a 0 will
be received as a 0 is equal to the probabtlity p that a I will be
received as a l. Then the probability that a I will be received as a
0 or a 0 as a I must be (l - p).Suppose further that these prob-
abilities do not depend on past history and do not change with
time. Then, the proper abstract representation of this situation is
a symmetric binary channel (in the manner of Figure VIII-2) as
shown in Figure VIII-4.

Because of the symmetry of this channel, the maximum infor-
mation rate, that is, the channel capacity, will be attained for a
message source such that the probability of sending a I is equal
to the probability of sending a zero. Thus, in the case of x (and,
because the channel is symmetrical, in the case of y also)

p ( r ) - p (0 ) -V2
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We already know that under these circumstances

H(x) - H(y)
: (Vz log t/z + Vz Log Vz)
- I bit per syrnbol

What about the conditional probabilities? What about the
equivocation, for instance, as given by S.5? Four terms will con-
tribute to this conditional entropy. The sources and contributions
are:

The probability that I is received is r/2. When 1 is received, the
probability that I was sent is p and the probability that 0 was
sent is (1 - p). The contribution to the equivocation from these
events is:

V r ( - p L o g p  ( l  - p )  l o g ( l  - p ) )

There is a probability of Vz that 0 is received. When 0 is received,
the probability that 0 was sent is p and the probability that I was
sent is (1 - p). The contribution to the equivocation from these
events is:

' / r ( - p l o g p  ( 1  - p )  l o g ( l  - p ) )

Accordingly, wo see that, for the symrnetrical binary channel, the
equivocation, the sum of these terms, is

Hr(x) - -p log p (l - p) log (l - p)

Thus the channel capacity C of the symmetrical binary channel
is, from 8.8,

C -  I  +  p logp  +  ( l  -  p )  l og  ( l  -  p )

P
VIII.4Fig.
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We should note that this channel capacity C is just unity less the
function plotted against p rn Figure V-1. We see tfrat if p-rs Vz, the
channel capacity is 0. This is natu ral, for in this case, if we receive
a l, it is equally likely that a I or a 0 was transmitted, and the
received message does nothing to resolve our uncertainty as to
what digit the sender sent. We should also note that the ihannel
capacity is the same for p - 0 as for p : l. If we consistently
receive a 0 when we transmit a I and i I when we transmit u d,
we are just as sure of the sender's intentions as if we always get a
I  f o r a  I  a n d a 0 f o r a 0 .

If' on the average, I digit in l0 is in error, the channel capacity
is reduced to .53 of its value for errorless transmissior, and fotor.
error in 100 digits, the channel capacity is reduced to .92 merely.

The writer would like to testify at this point that the simpli ciiy
of the result we have obtained for the symrnetrical binary rhutttt.l
is in a sense misleading (it was misleading to the writei at least).
The expression for the optimum rate (channel capacity) of an
unsymmetrical binary channel in which the probability that a I is
received as a I it P and the probability that a 0 is received as a 0
is a different number g is a mess, and more complicated channels
must offer almost intractable problems.

Perhaps for this reason as well as for its practical importance,
much consideration hT been given to transmission ovefthe sym-
metrical binary channel. What sort of codes are we to use in oider
to attain errorless transmission over such a channel? Examples
devised by R. 

'W. 
Hammitg were mentioned by Shannon in fris

original paPer. Later, Marcel J. E. Golay pubfished concerning
error-correcting codes in 1949, and Hammirg published his wort
in 1950. We should note that these codes were devised subsequent
to Shannon's work. They might, I suppose, have been devised
before, but it was only when Shannon strowed error-free trans-
mission to be possible that people asked, "How can we achieve tt?"

We have noted that to gtt in efficient correction of errors, the
encoder must deal with a long sequence of message digits. As a
simple example, suppose we encode our message di$ts in blocks of
16 and add after each block a sequence of. checE aigitt which enable
us to detect a single erro1 itt any one of the digits, message digits
or check digits. As a particular example, consider the sequence of
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m e s s a g e d i g i t s l  l 0 l 0 0 l  1 0 1 0 1  1 0 0  O . T o f i n d t h e
appropriate check digits, we write the 0's and I's constituting the
message digits in the 4 by 4 grtd shown in Figure VIII-5. Associ-
ated with each row and each column is a circle. In each circle is
a 0 or a I chosen so as to make the total number of I's in the
column or row (includirg the circle as well as the squares) eVen.
Such added digits are called check digits. For the particular assort-
ment of message digits used as an example, together with the
appropriately chosen check digits, the numbers of l's in successive
columns (left to right) and 2, 2, 2, 4, all being even numbers, and
the numbers of, I's in successive rows (top to bottom) are 4,2,2,2,
which are a1aun all even.

What happens if a single error is made in the transmission of a
message digit among the 16? There will be an odd number of ones
in a row and in a column This tells us to change the message digit
where the row and column intersect.

What happens if a single error is made in a check digit? In this
case there will be an odd number of ones in a row or in a column.
We have detected an error, but we see that it was not among the
message digits.

The total number of digits transmitted for 16 message digits is
16 + 8, or 24; we have increased the number of digits needed in
the ratio 24/16, or 1.5. If we had started out with 400 message
digits, we would have needed 40 check digits and we would have
increased the number of digits needed only in the ratio of 440/400

Fig. ,'III-5
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or l.l. Of course, we would have been able to correct only one
error rn 440 rather than one error rn 24.

Codes can be devised which can be used to correct larger num-
bers of errors in a block of transmitted characters. Of course, more
check digits are needed to correct more errors. A final code, how-
ever we may devise it, will consist of some set of 2M blocks of 0's
and I's representing all of the blocks of digits M digits long which
we wish to transmit. If the code were not error correcting, we
could use a block just M digits long to represent each block of M
digits which we wish to transmit. We will need more digits per
block because of the error-correctirg feature.

When we receive a given block of digits, we must be able to
deduce from it which block was sent despite some numb er n of
errors in transmission (changes of 0 to I or I to 0). A mathema-
tician would say that this is possible if the distance between any
two blocks of the code is at least 2n + l.

Here distance is used in a queer sense indeed, &S defined by the
mathematician for his particular purpose. In this sense, the dis-
tance between two sequences of binary digits is the number of 0's
or I's that must be changed in order to convert one sequence into
theother .For instance, thedistancebetweenO 0 I  0andl  I  I  I
is 3, because we can convert one sequence into the other only by
changirg three digits in one sequence or in the other.

When we make n errors in transmission, the block of digits we
receive is a distance n from the code word we sent. It may be a
distance n digits closer to some other code word. If we want to be
sure that the received block will always be nearer to the correct
code word, the one that was sent, than to any other code word,
then the distance from any code word to any other code word must
be at least 2n * L.

Thus, one problern of block coding is to find 2M equal length
code words (longer than M binary digits) that are all at least a
distance 2n + I from one another. The code words must be as
short as possible. The codes of Hamming and Golay are efficient,
and other efficient codes have been found.

Another problem of block coding is to provide a feasible scheme
for encoding and, especially, for decoding. Simply listing code
words won't do. The list would be too long. Encoditg blocks of.20
binary digits (M - 20) requires around a million code words. And,
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finding the code word nearest to some received block of digits

would take far too long.
Algebraic codi.g theory provides means for coding and decoding

with the correction of many errors. Slepian was a pioneer in this field

and important contributors can be identified by the names of types

of algebraic codes: Reed-Solomon codes and Bose-Chaudhuri'

Hocquenghem codes provide examples. Elwin Berlekamp con-

tribuied greatly to mithematical techniques for calculating the

nearest code word more simPlY.

Convolutional codes are attother means of error correction. In

convolution coding, the latest M digits of the bin aty stream to be

sent are stored in what is called a shift register. Every time a new

binary digit comes in,2 (or 3, or 4) are sent out by the coder. The

digits rcnI out are produced by what is called modulo 2 addition of

uuiiour digits stored in the shift register. (In modulo 2 addition

of binary numbers one doesn't "carry.")

Convolutional encoding has been traced to early ideas of Elias,

but the earliest coding and decoding scheme published is that in a

patent of D. W. Hagdbutger, filed in 1958. Convolutional decoding

ieally took off in lg6i when Andrew J. Viterbi invented an

optimum and simple decoding scheme called maximum likelihood

decoditg.
Toda!, convolutional decoding is used in such valuable, noisy

communication channels as in sending pictures of Jupiter and its

satellites back from the Voyager spacecraft. Convolutional coding

is particularly valuable in such applications because Viterbi's

maiimum hk;lihood decoding can take advantage of the strength

as well as the sign of a received pulse.

If we receive a very small positive pulse, it is almost as likely

to be a negative pulse plus noise as it is to be a positive pulse plus

noise. Butl if we receive a large positive pulse, it is much likelier

to be a positive pulse plus noise than a negative pulse plus noise.

Viterbi.decoding can take advantage of this.

Block coding is used in protecting the computer storage of vital

information. It can also be used in the transmission of binary in-

formation over inherently low-noise data circuits.

Many existing circuitJ that are used to transmit data are subject

to long bursts of noise. When this is so, the most effective form of
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error correction is to divide the message up into long blocks of
digits and to provide foolproof error detecti,on. If an error is de-
tected in a received block, retransmission of the block is requested.

Mathematicians are fascinated by the intricacies and chattenges
of block coding. In the eyes of some, information theory has Ur-
come essentillly algebraic coding theory. Codirg theory is im-
portant to information theory. But, in its inception, in Shannon's
work, information theory was, as we have seen, much broader. And
even in coding itself, we must consider source coding as well as
channel coding.

In Chapter VII, we discussed ways of removing redundancy
from a message so that it could be transmitted by t*anE of fewer
binary digits. In this chapter, we have considetld the matter of
adding redund ancy to a nonredundant message in order to attain
virtually error-free transmission over a noisy channel. The fact that
such error-free transmission can be attained using a noisy channel
was and is surprisitg to communication enginiers and mathe-
maticians' but Shannon has proved that it is necessarily so.

Prior to receiving a message over an error-free cliannel, the
recipient is uncertain as to what particular message out of many
possible messages the sender will actually transmit. The amount
of the recipient's uncertainty is the entropy or information rate of
the message source, measured in bits p.i symbol or per second.
Tl: recipient's uncertainty as to what message the message source
will send is completely resolved if he receives an exact replica of
the message transmitted.

A message may be transmitted by means of positive and nega-
tiu. pulses of current. If a strong enough noise consisting of rin-
dom positive and negative pulsei is added to the signal, iporitive
signal pulse may be changed into a negative pulsei or a negative
signal pulse may be changed into a positive pulse. When Juch a
noisy channel is used to transmit the message, if the sender sends
any particular lYmbol there is some uncertainty as to what symbol
will be received by the recipient of the message.

When the recipient receives a mess age over a noisy channel, he
knows what message he has received, but he cannot ordinarily be
sure what message was transmitted. Thus, his uncertainty as to
what message the sender chose is not completely resolved even on
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the receipt of a mess age.The remaining uncertainty depends on

the probability that a received symbol will be other than the

symbol transmitted.
From the sender's point of view, the uncertainty of the recipient

as to the true message is the uncertainty, or entropy, of the message
source plus the uncertainty of the recipient as to what message was

transmitted when he knows what message was received. The measure
which Shannon provides of this latter uncertainty is the equivoca-
tion, and he defines the rate of transmission of information as the
entropy of the message source less the equivocation.

The rate of transmission of information depends both on the

amount of noise or uncertainty in the channel and on what message
source is connected to the channel at the transmitting end. Let us

suppose that we choose a message source such that this tate of

transmission which we have deflned is as great as it is possible to
make it. This greatest possible rate of transmission is called the
channel capacity for a noisy channel. The channel capacity is
measured in bits per symbol or per second.

So far, the channel capacity is merely a mathematically defined
quantity which we can compute if we know the probabilities of
various sorts of errors in the transmission of symbols. The channel
capacrty is important, because Shannon proves, &s his fundamental
theorem for the noisy channel, that when the entropy or informa-

tion rate of a message source is less than this channel capacity, the
messages produced by the source can be so encoded that they can

be transmitted over the noisy channel with an error less than any

specified amount.
In order to encode messages for error-free transmission over

noisy channels, long sequences of symbols must be lumped together

and encoded as one supersymbol. This is the sort of block encoding
that we have encountered earlier. Here we are using it for a new

purpose. We are not using it to remove the redundancy of the
messages produced by u message source. Instead, we are using it

to add redundancy to nonredundant messages so that they can be

transmitted without error over a noisy channel. Indeed, the whole

problem of efficient and error-free communication turns out to be

ittat of removing from messages the somewhat inefficient redun-

dancy which they have and then adding redundancy of the right
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sort in order to allow correction of errors made in transmission.
The redundant digits we must use in encodirg messages for

error-free transmission, of courseo slow the speed of transmission.
We have seen that in usin g a binary symmetric channel in which
I transmitted digit in 100 is erroneously received, we can send only
92 correct nonredundant message digits for each 100 digits we feed
into the noisy channel. This means that on the average, we must
use a redundant code in which, for each 92 nonredundant message
digits, we must include in some way 8 extra check digits thus
making the over-all stream of digits redundant.

Shannon's very general work tells us in principle how to proceed.
But, the mathematical difficulties of treating complicated channels
are great. Even in the case of the simple, symmetric, ofron binary
channel, the problem of finding efficient codes is formidable,
although mathematicians have found a large number of best codes.
Alas, even these seem to be too complicated to use!

Is this a discouraging picture? How much wiser we are than in
the days before information theory! We know what the problem
is. We know in principle how well we can do, and the result has
astonished engineers and mathematicians. Further, we do have
effective error-correcting codes that are used in a variety of appli-
cations, including the transmission back to earth of glamorous
pictures of far planets.



CHAPTER IX Many Dimensions

Yr^q.ns AND vEARS AGo (over thirty) I found in the public library
of St. Paul a little book which introduced me to the mysteries of
the fourth dimension. It was Flatland, by Abbott. It describes a
two-dimensional world without thickness. Such a world and all its
people could be drawn in complete detail, inside and out, on a
sheet of paper.

What I now most remember and admire about the book are the
descriptions of Flatland society. The inhabitants are polygonal,
and sidedness determines social status. The most exalted of the
multisided creatures hold the honorary status of circles. The lowest
order is isosceles triangles. Equilateral triangles are a step higher,
for regularity is admired and required. Indeed, irregular children
are cracked and reset to attain regulanty, an operation which is
frequently fatal. Women ate extremely narrow, needle-like crea-
tures and are greatly admired for their swaying motion. The author
of record, A. Square, accords well with all we have come to
associ ate with the word.

Flatland has a mathematical moral as well. The protagonist is
astonished when a circle of varying size suddenly appears in his
world. The circle is, of course, the intersection of a three-dimen-
sional creature, a sphere, with the plane of Flatland. The sphere
explains the mysteries of three dimensions to A. Square, who in
turn preaches the strange doctrine. The reader is left with the
thought that he himself may someday encounter a fluctuating and
disappearing entity, the three-dimensional intersection of a four-
dimensional creature with our world.

166
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Four-dimensional cubes or /ess eracts, hyperspheres, and other
hypergeometric forms are old stuff both to mathematicians and to
science fiction writers. Supposing a fourth dimension like unto the
three which we know, we can imagine many three-dimensional
worlds existing as close to one another as the pages of a manu-
script, each imprinted with different and distinct characters and
each separate from every other. We can imagine travelirg through
the fourth dimension from one world to another or reaching
through the fourth dimension into a safe to steal the bonds or into
the abdomen to snatch an appendix.

Most of us have heard also that Einstein used time as a fourth
dimension, and some may have heard of the many-dimensional
phase spaces of physics, in which the three coordinates and three
velocity components of each of many particles are all regarded
as dimensions.

Clearly, this sort of thing is different from the classical idea of
a fourth spatial dimension which is just like the three dimensions
of up and down, back and forth, and left and right, those we all
know so well. The truth of the matter is that nineteenth-century
mathematicians succeeded in generuhzing geometry to include any
number of dimensions or even an infinity of dimensions.

These dimensions are for the pure mathematician merely mental
constructs. He starts out with a line called the x direction or x Axis,
as shown in a of Figure IX- 1. Some point p lies a distance xo to
the right of the origin O on the x axis. This coordinate xp Ln fact
describes the location of the point p.

The mathematician can then add a y axis perpendicular to the
x axis, &s shown in b of Figure IX- l. He can specify the location
of a point p rn the two-dimensional space or plane in which these
axes lie by means of two numbers or coordinates: the distance from
the origin O in the y directioil, that is, the herght yr, and the
distance from the origin O in the x dire ction xp, that is, how far p
is to the right of the origin O.

In c of Figure IX- I the x, /, and z axes are supposed to be all
perpendicular to one another, like the edges of a cube. These axes
represent the directions of the three-dimensional space with which
we are familiar. The location of the point / is given by its height
y, above the origin Q its distance xo to the right of the origin O,
and its distance zo behind the origin O.
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Fig. IX-l

Of course, in the drawing c of Figure IX-l the x, /, and z axes

aren,t really all perpendiculir to onJanother. we have here merely

a two-dimensiottal perspective sketch of an actual three-dimen-

sional situation in which the axes are all perpendicular to one

another. In d of Figure IX-l, we similarly have a two-dimensional

perspective sketch of axes in a fi,ve-dimensional space. Since we

come to the end of the alphabet in going from x to z, we have

merely labeled these directions xt, x2, xB, x4, x5, Llcording to the

practice of mathematicians.
Of course these five axes of d of Figure IX-l are not all peqpen-
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dicular to one another in the drawing, but neither are the three
axes of c. We can't luy out five mutually perpendicular lines in our
three-dimensional space, but the mathematician can deal logically
with a "spa ce" in which five or more axes are mutually perpen-
dicular. He can reason out the properties of various geometrical
figures in a five-dimensional space, in which the position of a point
p is described by five coordinates xLp, xzp, xup, x4p, xsp. To make
the space like ordinary space (a Euclidean space) the mathematician
says that the square of the distance d of the porntp from the origin
shall be given by

d2 = *rr, + xzpz + xspz + x4pz + xbpz (9 .1 )

In dealing with multidimensional spaces, mathematicians define
the "volume" of a oocubical" figure as the product of the lengths
of its sides. Thus, in a two-dimensional space the figure is a square,
and, if the length of each side is I, the "volume" is the areaof the
square, which is L2. ln three-dimensional space the volume of a
cube of width, height, and thickness Z is le. In five-dimensional
space the volume of a hypercube of exte nt L in each direction is
L5, and a ninety-nine dimensional cube L on a side would have a
volume Lee.

Some of the properties of figures in multidimensional space are
simple to understand and startling to consider. For instance, con-
sider a circle of radius I and a concentric circle of radtvs t/z inside
of it, as shown in Figure IX-2. The area ("volume") of a circle is
nrz, so the area of the outer circle is n and the area of the inner

l i

-

( 
'.A)

\/

Fig. IX-2
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circle is z (Vr), = (Vo)z. Thus, & quarter of the area of the whole
circle lies within a circle of half the diameter.

Suppose, however, that we regard Figure IX-z as representing
spheres. The volume of a sphere is (lt)nF!, and we find that Va of
the volume of a sphere lies within a sphere of Vz diameter. In a
similar w&), the volume of a hypersphere of r dimensions is pro-
portional to rn, and as a consequence the fraction of the volume
which lies in a hypersphere of half the radius is r/2n. For instance,
for n_ 7 this is a fraction I/128.

We could go through a similar argument concerning the fraction
of the volume of a hypersphere of radius r that lies within a sphere
of radius 0.99r. For a l,OO0-dimension hypersphere we find that a
fraction 0.00004 of the volume lies in a sphere of 0.99 the radius.
The conclusion is inescapable that in the case of a hypersphere of
a verv high dimensionality, essentially all of the volume lies very
near to the surface !

Are such ideas anything but pure mathematics of the most
esoteric sort? They are pure and esoteric mathematics unless we
attach them to some problem pertainitg to the physical world.
Imaginary numbers, such as \f, once had no practical physical
meaning. However, imaginary numbers have been assigned mean-
ings in electrical engineering and physics. Can we perhaps find a
physical situation which can be represented accurately by the
mathematical properties of hyperspace? We certainly can, right in
the field of communication theory. Shannon has used the geometry
of, multidimensional space to prove an important theorem concern-
ing the transmission of continuous, band-limited signals in the
presence of noise.

Shannon's work provides a wonderful example of the use of a
new point of view and of an existing but hitherto unexploited
branch of mathematics (in this case, the geometry of multidimen-
sional spaces) in solving a problem of great practical interest.
Because it seems to me so excellent an example of applied mathe-
matics, I propose to go through a good deal of Shannon's reason-
ing. I believe that the course of this reasonitg is more unfamiliar
than difficult, but the reader will have to embark on it at his
own peril.
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In order to discuss this problem of transmission of continuous
signals in the presence of noise, we must have some common
measure of the strength of the signal and of the noise. Power turns
out to be an appropriate and useful measure.

When we exeft a force of I lb over a distance of I ft in raising
a I lb weight to the height of I ft we do work The amount of work
done is I Joot-pound(ft-1b). The weight has, by virtue of its height,
an energ/ of I ft-lb. In fallitg, the weight can do an amount of
work (as in drivin g a clock) equal to this energy.

Power is rate of doing work. A machine which expends 33,000
ft-lb of energy and does 33,000 ft-lb of work in a minute has by
definition a power of I horsepower (hp).

In electrical calculations, we reckon energy and work in terms
of a unit called the joule and power in terms of a unit called a watt.
A watt is one joule per second.

If we double the voltage of a signal, we increase its energy and
power by u factor of 4. Energy and power are proportional-to the
square of the voltage of a signal.

We have seen as far back as Chapter IV that a continuous
signal of band width W can be represented completely by its
amplitude at 2W sample points per second. Conversely, we can
construct a band-limited signal which passes through any 2W
sample points per second which we may choose. We can specify
each sample arbitrarily and change it without changing anyother
sample. When we so change any sample we change the correspond-
irg band-limited signal.

We can measure the amplitudes of the samples in volts. Each
sample represents an energy proportional to the square of its
voltage.

Thus, we can express the squares of the amplitudes of the
samples in terms of energy. By using rather special units to measure
energy, we can let the energy be equal to the square of the sample
amplitude, and this won't lead to any troubles.

Let us, then, designate the amplitudes of successive and cor-
rectly chosen samples of a band-limited signal, measured perhaps
in volts, by the letters xL, xz, x3, etc. The parts of the signal energy
represented by the samples will be xL2, xzz, xr2, etc. The total
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energy of the signal, which we shall call E, will be the sum of
these energies:

E :  x t2  +  xz2  +  xs2  +e tc .

But we see that in geometrical terms E is just the square of the
distance from the origin, &S given by 9.1, if xL, xz, x3, etC ., ate the
coordinates of a point in multidimensional space!

Thus, if we let the amplitudes of the samples of a band-limited
signal be the coordinates of a point in hyperspace, the point itself
represents the complete signal , that is, all the samples taken
together, and the square of the distance of the point from the origin
represents the energy of the complete signal.

Why should we want to represent a signal in this geometrical
fashion? The reason that Shannon did so was to prove an impor-
tant theorem of communication theory concerning the effect of
noise on signal transmission.

In order to see how this can be done, we should recall the
mathematical model of a signal source which we adopted in
Chapter III. We there assumed that the source is both stationary
and ergodic. These assumptions must extend to the noise we con-
sider and to the combined 'osource" of signal plus noise.

It is not actually impossible that such a source might produce a
signal or a noise consisting of a very long succession of very high-
energy samples or of very low-en ergy samples, any more than it is
impossible that an ergodic source of letters might produce an
extremety long run of E's. It is merely very unlikely. Here we ate
dealing with the theorem we encountered first in Chapter V. An
ergodic source can produce a class of messages which are probable
and a class which are so very improbable that we can disregard
them. In this case, the improbable messages are those for which
the average power of the samples produced departs significantly
from the time average (and the ensemble average) characteristic
of the ergodic source.

Thus, for all the long messages that we need to consider, there
is a meaningful average power of the signal which does not change
appreciably with time. We can measure this average power by
adding the energies of a large number of successive samples and
dividing by the time Z during which the samples are sent. As we

(9.2)
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make the time Z longer and longer and the number of samples
larger and larger, we will get a more and more accurate value for
the average power. Because the source is station ary, this average
power will be the same no matter what succession of samples
we use.

We can say this in a different way. Except in cases so unlikely
that we need not consider them, the total energy of a large number
of successive samples produced by a station ary source will be
nearly the same (to a small fractional difference) regardless of what
particular succession of samples we choose.

Because the signal source is ergodic as well as station ery, we can
say more. For each signal the source produces, regardless of what
the particular signal is, it is practically certain that the energy of
the same large number of successive samples will be nearly the
same, and the fractional differences among energies get smaller
and smaller as the number of samples is made larger and larger.

Let us represent the signals from such a source by points in
hyperspace. A signal of band width W and duration T can be
represented by 2WT samples, and the amplitude of each of these
samples is the distance along one coordinate axis of hyperspace.
If the avera9e energy per sample is P, the total energy of the zWT
samples will be very close to 2WTP if 2WT is a very large number
of samples. We have seen that this total energy tells how far from
the origin the point which represents the signal is. Thus, as the
number of samples is made larger and larger, the points represent-
itg different signals of the same duration produced by the source
lie within a smaller and smaller distance (measured as a fraction
of the radius) from the surface of a hypersphere of radius 1pWW.
The fact that the points representing the different signals all lie so
close to the surface is not surprising if we remember that for a
hypersphere of high dimensionality almost all of the volume is very
close to the surface.

We receive, not the signal itself, but the signal with noise added.
The noise which Shannon considers is call ed white Gaussian noise.
The word white implies that the noise contains all frequencies
equally, and we assume that the noise contains all frequencies
equally up to a frequency of W cycles per second and no higher
frequencies. The word Gaussian refers to a law for the probability
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of samples of various amplitudes, a law which holds for many
natural sources of noise. For such Gaussian noise, each of the 2W
samples per second which represent it is uncorrelated and inde-
pendent. If we know the average energy of the samples which we
will call 1/, knowing the energy of some samples doesn't help to
predict the energy of others. The total energy of 2WT samples will
be very nearly ZWTN if zWT rs a large number of samples, and
the energy will be almost the same for any succession of noise
samples that are added to the signal samples.

We have seen that a particular succession of signal samples is
repreSentedbysomepointinhyperspaceadistance\mPfrom
the origin. The sum of a signal plus noise is represented by some
point a little distance away from the point representing the signal
alone. In fact, we see that the distance from the point representing
the signal alone to the point representing the signal plus the noise
i s \m .Thus , thes igna1p1us theno ise1 ies ina l i t t 1ehype r -
sphereofradius\Wcenteredonthepointrepresent ingthe
signal alone.

Now, we don't receive the signal alone. We receive a signal of
average energy P per sample plus Gaussian noise of average
energy N per sample. In a time T the total received energy is
TWT(P + l/) and the point representing whatever signal was
sent plus whatever noise was added to it lies within a hypersphere
ofradius w.

After we have received a signal plus noise for T seconds we can
find the location of the point representing the signal plus noise.
But how are we to find the signal? We only know that the signal
l ieswithinadistance\WofthepointrepreSentingthesignal
plus noise.

How can we be sure of deducing what signal was sent? Suppose
that we put into the hypersphere of radius , in
which points representing a signal plus noise must lie, a large
number of little nonoverlappirg hyperspheres of radius a bare
shade larger than tEWffi. Let us then send only signals repre-
sented by the center points of these little spheres.

When we receive the zWT samples of any particular one of these
signals plus any noise samples, the corresponding point in hyper-
space can only lie within the particular little hypersphere surround-
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itg that signal point and not within any other. This is so because,
as we have noted, the points representing long sequences of samples
produced by an ergodic noise source must be almost at the surface
ofasphereofradius\mThus, thesignalsentcanbeident i -
fied infallibly despite the presence of the noise.

How many such nonoverlapping hyperspheres of radius
\EW can be placed in a hypersphere of radius W
The number certaitly cannot be larger than the ratio of the volume
of the larger sphere to that of the smaller sphere.

The number n of dimensions in the space is equal to the number
of signal (and noise) samples 2 WT. The volume of a hypersphere
in a space of n dimensions is proportion aI to rn. Hence, the ratio
of the volume of the large signal-plus-noise sphere to the volume
of the little noise sphere is

( W \ z w r :  ( p + t t \ "
\@)  \N/

This is a limit to the number of distinguishable messages we can
transmit in a time Z The logarithm of this number is the number
of bits which we can transmit in the time Z It is

rr/Tr^- /P + ,nr\w r  rog \  
1 , ,  /

As the message is. 7" seconds long, the corresponding number of bits
per second C is

C -  W\og ( l  +  P/N) (e.3)

Having got to this point, we can note that the ratio of average
energy per signal sample to average energy per noise sample must
be equal to the ratio of average signal power to average noise
power, and we can, in 9.3, regard P/N as the ratio of signal porver
to noise power instead of as the'ratio of average signal-sample
energy to average noise-sample energy.

The foregoirg argument, which led to 9.3, has merely shown that
no more than C bits per second can be sent with a band width of
W cycles per second using a signal of power P mixed with a
Gaussian noise of power l/. However, by a further geometrical
argument, in which he makes use of the fact that the volume of a
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hypersphere of high dimensionality is almost all very close to the
surface, Shannon shows that the signalirg rate can approach as
close as one likes to C as given by 9.3 with as small a number of
errors as one likes. Hence, C, as given by 9.3, is the channel
capacity for a continuous channel in which a Gaussian noise is
added to the signal.

It is perhaps of some interest to compare equation 9.3 with the
expressions for speed of transmission and for information which
Nyquist and Hartley proposed in 1928 and which we discussed in
Chapter II. Nyquist and Hartley's results both say that the number
of bin ary digits which can be transmitted per second is

n l o g m

Here m Ls the number of different symbols, and n is the number
of symbols which are transmitted per second.

One sort of symbol we can consider is a particular value of
voltage, as, +3, * l, - l, or -3.Nyquist knew, as we do, thatthe
number of independent samples or values of voltage which can be
transmitted per second is 2W. By using this fact, we can rewrite
equation 9.3 in the form

C - (n/2) log (1 + P/1,{)
C - n l o g @

Here we are really merely retracitg the steps which led us to 9.3.
We see that in equation 9.3 we have got at the average number

m of different symbols we can send per sample, in terms of the ratio
of signal power to noise power. If the signal power becomes very
small or the noise power becomes very large, so that P / N is
nearly 0, then the average number of different symbols we can
transmit per sample goes-to

1 o g 1 _ 0

Thus, the aveta1e number of symbols we can transmit per sample
and the channel cap acrty go to 0 as the ratio of signal power to
noise power goes to 0. Of course, the number of symbols we can
transmit per sample and the channel capacity become large as we
make the ratio of signal power to noise power large.

Our understanding of how to send a large average number of
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independent symbols per sample has, however, gone far beyond
anything which Nyquist or Hartley told us. We know that if we
are to do this most efficiently we must, in general, not fty to
encode a symbol for transmission as a particular sample voltage
to be sent by itself. Instead, we must, in general, resort to the
now-familiar procedure of block encodirg and encode a long
sequence of symbols by means of a large number of successive
samples. Thus, if the ratio of signal power to noise power ts 24,
wecanontheaVeragetransmitwi thnegl ig ib leerror \m4_
\F : 5 different symbols per sample, b.ri we can't transmit any
of 5 different symbois by means of one particular sample. 

r

In Figure VIII- I of Chapter VIII, we considered sending binary
digits one at a time in the presence of noise by using a signal which
was either a positive or a negative pulse of a pafticular amplitude
and calling the received signal a I if the signal plus noise was
positive and a 0 if the received signal plus noise was negative.
Suppose that in this case we make the signal powerful enough
compared with the noise, which we assume to be Gaussian, so that
only I received digit in 100,000 will be in error. Calculations show
that this calls for about six times the signal power which equation
9.3 says we will need for the same band width and noise power.
The extra power is needed because we use as a signal either a short
positive or negative pulse specifying one binary digit, rather than
using one of many long signals consisting of many ditrerent samples
of various amplitudes to represent many successive binary digits.

One very special way of approaching the ideal signaling rate or
channel capaiity for a small, uu.tug. rlgt ul powet ii a laige noise
power is to concentrate the signal po-*rt ir, a single sliort but
powerful pulse and to send this pulse in one of many possible time
positions, each of which represents a different symbol. In this very
special and unusual case we can efficien tly transmit symbols one
at a time.

If we wish to approach Shannon's limit for a chosen bandwidth
we must use as elements of the code long, complicated signal waves
that resemble gaussian noise.

We can if we wish look on relation 9.3 not narrowly as telling
us how many bits per second we can send over a particular com-
munication channel but, rather, &s telling us something about the
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possibilities of transmitting a signal of a specified band width with
some required signal-to-noise ratio over a communication channel
of some other band width and signal-to-noise ratio. For instance,
suppose we must send a signal with a band width of 4 megacycles
per second and attain a ratio of signal power to noise power P / N
of 1,000. Relation 9.3 tells us that the corresponding channel
capacity is

C - 40,000,000 bits/second

But the same channel capacity can be attained with the combina-
tions shown in Table XIII.

Tesrn XIII

Combinations of W and P/N Which Give
Same Channel CapacitY

P/NW

4,000,000
8,000,000
2,000,000

1,000
30.6

1,000,000

We see from Table XIII that, in attainitg a given channel

capacity, we can use a broader band width and a lower ratio of

signal to noise or a narrower band width and a higher ratio of

signal to noise.
Early workers in the field of information theory were intrigued

with the idea of cutting down the band width required by increas-
irg the power used. This calls for lots of power. Experience has

shown that it is much more useful and practical to increase the

band width so as to get a good signal-to-noise ratio with less power

than would otherwise be required.
This is just what is done in FM transmission, as an example. In

FM transmission, a particular amplitude of the message signal to

be transmitted, which may, for instance, be music, is encoded as

a radio signal of a particular frequency. As the amplitude of the

message signal rises and falls, the frequency of the FM signal

which t"pt.sents it changes greatly, So that in sending high fidelity
music *ttic6 has a band width of 15,000 cps, the FM radio signal

can range over a band width of 150,000 cps. Because FM trans-
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mission makes use of a band width much larger than that of the
music of which it is an encoding, the signal-to-noise ratio of the
received music can be much higher than the ratio of signal power
to noise power in the FM signal that the radio receiver receives.
FM is not, however, an ideally efficient system; it does not work
the improvement which we might expect from 9.3.

Ingenious inventors are ever devising improved systems of mod-
ulation. TWice in my experience someone has proposed to me a
system which purported to do better than equation 9.3, for the ideal
channel capacrty, allows. The suggestions were plausible, but I
knew, just as in the case of perpetual motion machines, that
something had to be wrong with them. Careful analysis showed
where the error lay. Thus, communication theory can be valuable
in tellitg us what can't be accomplished as weli as in suggesting
what can be.

One thing that can't be accomplished in improving the signal-
to-noise ratio by increasing the band width is to make a syite*
which will behave in an orderly and happy way for all ratjos of
signal power to noise power.

According to the view put forward in this chapter, we look on
a signal as a point in a multidimensional space, where the number
of dimensions is equal to the number of samples. To send a narrow-
band signal of a few samples by means of a broad-band signal
having more samples, we must in some way map points in a rpure
of few dimensions into points in a space of moie-dimensions in a
one-to-one fashion.

Wuy back in Chapter I, we proved a theorem concerning the
mapping of points of a space of two dimensions (a plane) 

-onto

points of a space of one dimension (a line). We proued that if we
map each point of the plane in a one-to-one fashion into a single
corresponding point on the line, the mapping cannot be continu-
ous. That is, if we move smoothly along a path in the plane from
point to nearby point, the corresponding positions on the line must
ju*p back and forth discontinuously. A similar theorem is true
for the mapping of the points of any space onto a space of differ-
ent dimeniibttality. Thi bodes troubli fot transmission schenies
in which few message samples are represented by many signal
samples.
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Shannon gives a simple example of this sort of trouble, which
is illustrated in Figure IX-3. S.rppose that we use two sample
amplitudes v2 and v1 to represent a single sample amplitude il. We
rcgard v2 and v1 &s the distance up from and to the right of the

lower left hand corner of a square. In the square, we draw a snaky
line which starts near the lower left-hand corner and goes back

and forth across the square, gradually progressing upward. We let

distance along this line, measured from its origin near the lower
left-hand corner to some specified point along the line, be u, the

voltage or amplitude of the signal to be transmitted.
Ceitainly, ury value of u is represented by particular values of

v1 and v2. 
'We 

see that the range of v1 ot v2 is less than the range

of u. We can transmit u1 and v2 and then reconstruct u with geat

accuracy. Or can we?
Suppose a little noise gets into vr and v2, so that, when we try

to 611a the corresponding value of u at the receiver, we land

somewhere in a circle of uncertainty due to noise. As long as the

diameter of the circle is less than the distance between the loops

of the snaky path, we can tell what the correct value of u ts to a

fractional error much smaller than the fractional error of v1 or v2.

I
V2

- -  C IRCLE OF
UNCERTAINTY

DUE TO NOISE

\t --t>

Fig. IX-3
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But if the noise is larger, we can't be sure which loop of the snaky
path was intended, and we frequently make a larger error in u.

This sort of behavior is inevitable in systems, such as FM, which
use alarge band width in order to get a better signal-to-noise ratio.
As the noise added in transmission is increased, the noise in the
received (demodulated) signal at first increases gradually and then
increases catastrophically. The system is said to "break" at this
level of signal to noise. Here we have an instance in which a
seemingly abstract theorem of mathematics tells us that a certain
type of behavior cannot be avoided in electrical communication
systems of a certain general type.

The apProach in this chapter has been essentially geometrical.
This is only one way of dealing with the problems of continuous
signals. Indeed, Shannon gives another in his book on communi-
cation theory, 4n approach which is applicable to all types of
signals and noise. The geometrical approach is interesting, how-
ever, because it is provirg illuminating and fruitful in many prob-
lems conceroitg electric signals which are not directly related to
communication theory.

Here we have arrived at a geometry of band-limited signals by
samplitg the signals and then letting the amplitudes of the samples
be the coordinates of a point in a multidimensional space. It is
possible, however, to geometrrze band-limited signals without
speaking in terms of samples, and mathematicians interested in
problems of signal transmission have done this. In fact, it is becom-
itg increasingly common to represent band-limited signals as
points in a multidimensional "signal space" or "function space"
and to prove theorems about signals by the methods of geometry.

The idea of signals as points in a multidimensional signal space
or function space is important, because it enables mathematicians
to think about and to make statements which are true about all
band-limited signals, or about large classes of band-limited signals,
without considering the confusirg details of particular signals,
just as mathematicians can make statements about oll tnangles or
all right triongles. Signal space is a powerful tool in the hands or,
rather, in the minds of competent mathematicians. We can only
wonder and admire.
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From the point of view of communication theory, our chief

concern in this chapter has been to prove an important theorem

concerning a noisy lontinuous channel. The result is embodied in

equation 9.3, which gives the rate at which we can transmit binary

digits with negligible error over a continuous channel in which a

sifnal of band width W and power P is mixed with a white

Gaussian noise of band width W and power y'/.

Nyquist knew, in 1928, that one can send 2W independgnt

sytnUots per second over a channel of band width 2W, buthe didn't

know how many different symbols could be sent per second for a

given ratio of signal power to noise power. We have found this out

Fot the case of a particular, common type of noise. We also know

that even if we cin transmit some average numb er m of symbols

per sample, in general, we can't do this by trying to encode suc-

iessive symbols independently as particular voltages. Instead, we

must use block encodirg, and encod e alarge number of successive

symbols together.
Equation 9.3 shows that we can use a signal of large band width

and io* ratio of signal power to noise power in transmitting a

message which has I small band width and a large ratio of signal

power to noise power. FM is an example of this. Such considera-

tions will be pursued further in Chapter X.
This chaptir has had another aspect. In it we have illustrated

the use of a novel viewpoint and the application of a powerful field

of mathematics in attacking a problem of communication theory.

Equation 9.3 was arrived at by the by-no-means-obvious expedient

oflepresentirg long electrical signals and the noises added to them

by points in a multidimensional space. The square of the distance

oi u point from the origin was interpreted as the energy of the

signal represented by the point.
Thus, a problem in communication theory was made to corre-

spond to a problem in geometry, and the desired result was arrived

at Uy geometrical arguments. We noted that the geometrical repre-

sentation of signals has become a powerful mathematical tool in

studying the transmission and properties of signals.
TLe feo.netrtzation of signal problems is of interest in its:lf, but

it is also of interest as an example of the value of seeking new
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mathematical tools in attacking the problems raised by our increas-
ingly complex technology. It is only by applying this order of
thought that we can hope to deal with the increasingly difficult
problems of engineering.



CHAPTER Information Theory
and Plrysics

I nnvn crvEN soMErHrNG of the historical background of com-
munication theory in Chapter II. From this we can see that

communication theory is an outgrowth of electrical communica-
tion, and we know that the behavior of electric currents and

electric and magnetic fields is a patt of physics.
Tb Morse and to other early telegraphists, electricity provided

a very limited means of communication compared with the human
voice or the pen in hand. These men had to devise codes by means

of which the letters of the alphabet could be represented by turning
an electric current successively on and off. This same problem of

the representation of material to be communicated by various sorts
of eleitrical signals has led to the very general ideas concerning
encodirg which are so important in communication theory. In this

relation of encoditrg to particular physical phenomena, we see one
link between communication theory and physics.

We have also noted that when we transmit signals by means of

wire or radio, we receive them inevitably admixed with a certain
amount of interfering disturbances which we call noise. To some
degree, we can avoid such noise. The noise which is generated in

oui receivirg apparatus we can reduce by .careful design and by
ingenious invention. In receiving radio signals, we can use an
antenna which receives signals most effectively from the direction
of the transmitter and which is less sensitive to signals coming from

184
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other directions. Further, we can make sure that our receiver
resPonds only to the frequencies we mean to use and rejects inter-
fering signals and noise of other frequencies.

Still, when all this is done, some noise will inevitably remain,
mixed with the signals that we receive. Some of this noise may
come from the ignition systems of automobiles. Far away from
man-made sources, some may come from lightnirg flashes. But
even if lightning were abolished, some noise would persist, &s
surely as there is heat in the universe.

Many years ago an English biologist named Brown saw small
pollen particles, suspended in a liquid, dance about erratically in
the field of his microscope. The particles moved sometimes this way
and sometimes that, sometimes swiftly and sometimes slowly. This
we call Brownian motion Brownian motion is caused by the impact
on the particles of surrounding molecules, which themselves
execute even a wilder dance. One of Einstein's first major works
was a mathematic al analysis of Brownian motion.

The pollen grains which Brown observed would have remained
at rest had the molecules about them been at rest, but molecules
ate always in random motion. It is this motion which constitutes
heat. In a ges, a molecule moves in a disorg antzed way. It moves
swiftly or slowly in straight lines between frequent collisions. In
a liquid, the molecules jostle about in close proximity to one
another but continually changirg place, sometimes moving swiftly
and sometimes slowly. In a solid, the molecules vibrate about their
mean positions, sometimes with a large amplitude and sometimes
with a small amplitude, but never moving much with respect to
their nearest neighbors. Always, however, in gas, liquid, or solid,
the molecules move, with an average energy due to heat which is
proportional to the temperature above absolute zero, however
erratically the speed and energy may vary from time to time and
from molecule to molecule.

Energy of mechanical motion is not the only energy in our
universe. The electromagnetic waves of radio and light also have
energy. Electromagnetic waves are generated by changing currents
of electricty. Atoms are positively charged nuclei surrounded by
negative electrons, and molecules are made up of atoms. When
the molecules of a substance vibrate with the energy of heat,



186 Symbols, Signals and Noise

relative motions of the charges in them can generate electromag-
netic waves, and these waves have frequencies which include those
of what we call radio, heat, and light waves. A hot body is said
to radiate electromagnetic waves, and the electromagnetic waves
that it emits are called radiation.

The rate at which a body which is held at a given temperature
radiates radio, heat, and light waves is not the same for all sub-

stances. Dark substances emit more radiation than shiny sub-
stances. Thus, silver, which is called shiny because it reflects most

of any waves of radio, heat, or tight falling on it, is a poor radiator,
while the carbon particles of black ink constitute a good radiator.

When radiation falls on a substance, the fraction that is reflected
rather than absorbed is different for radiation of different frequen-
cies, such as radio waves and light waves. There is a very general
rule, however, that for radration of a given frequency, the amount
of radiation a substance emits at a given temperature is directly
proportional to the fraction of any radiation falling on it which is
iUsbrUed rather than reflected. It is as if there were a skin around
each substance which allowed a certain fraction of any radiation
falling on it to pass through and reflected the rest, and as if the
fraction that passed through the skin were the same for radiation
either entering or leaving the substance.

If this were not so, we might expect a curious and unnatural (as

we know the laws of nature) phenomenon. Let us imagine a com-
pletely closed box or furnace held at a constant temperature. Let

us imagine that we suspend two bodies inside the furnace. Suppose
(contr ary to fact) that the first of these bodies reflected radiation
well, abiorbirg little, and that it also emitted radiation strongly,
while the second absorbed radiation well, reflectitg little, but

emitted radiation poorly. S.rppose that both bodies started out at
the same temperature. The first would absorb less radiation and
emit more rabiation than the second, while the second would

absorb more radiation and emit less radtation than the fi.rst. If this

were so, the second body would become hotter than the first.

This is not the case, however; all bodies in a closed box or
furnace whose walls are held at a constant, uniform temperature

attain just exactly the same temperature as the walls of the furnace,

whether the bodies are shiny, reflectirg little radiation and absorb-
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irg much, or whether they are dark,
absorbing much. This can be so only
than reflect radiation and the ability
hand, as they always do in nature.
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reflectirg little radiation and
if the ability to absorb rather
to emit radiation go hand in

Not only do all bodies inside such a closed furnace attain the
same temperature as the furnace; there is also a characteristic
intensity of radration in such an enclosure. Imagin e a part of the
radiation inside the enclosure to strike one of the walls. Some will
be reflected back to remain radiation in the enclosure. Some will
be absorbed by the walls. In turn, the walls will emit some radia-
tion, which will be added to that reflected away from the walls.
Thus, there is a continual interchange of radiation between the
interior of the enclosure and the walls.

If the radiation in the interior were very weak, the walls would
emit more radiation than the radiation which struck and was
absorbed by them. If the radiation in the interior were very strong,
the walls would receive and absorb more radiation than th.y
emitted. When the electromagnetic radiation lost to the walls is
just equal to that supplied by the walls, the radiation is said to be
in equilibrium with its material surroundings. It has an energy
which increases with temperature, just as the energy of motion
of the molecules of a g&s, a liquid, or a solid increases with
temperature.

The intensity of radiation in an enclosure does not depend on
how absorbitg or reflectirg the walls of the enclosure a^re; it
depends only on the temperature of the walls. If this were not so
and we made a little hole joining the interior of a shiny, reflecting
enclosure with the interior of i Outt, absorbing enclosure at the
same temperature, there would have to be a net flow of radiation
through the hole from one enclosure to another at the same tem-
perature. This never happens.

We thus see that there is a particular intensity of electromagnetic
radration, such as light, heat, and radio waves, which is character-
istic of a particular temperature. Now, while eletromagnetic waves
travel through vacuuffi, airr, or insulating substances such as glass,
they can be guided by wires. Indeed, we can think of the signal
sent along a palr of telephone wires either in terms of the voltage
between the wires and the current of electrons which flows in the
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wires, or in terms of a wave made up of electric and magnetic fields

between and around the wires, a wave which moves along with the

current. As we can identify electrical signals on wires with electro-
magnetic waves, and as hot bodies radiate electromagnetic waves,

*e ihould expect heat to generate some sort of electrical signals.

J. B. Johnson, who discovered the electrical fluctuations caused
by heat, described them, not in terms of electromagnetic waves but

in terms of a fluctuating voltage produced across a resistor.
Once Johnson had found and measured these fluctuations,

another physicist was able to find a correct theoretical expression
for their magnitude by upplying the principles of statistical me-

chanics. This second physicist was none other than H. Nyquist,

who, as we saw in Chapter II, also contributed substantially to the

early foundations of information theory.
Nyquist's expression for what is now called either Johnson noise

or thermal noise ts

W -  4KTRW (  10 .1 )

Here V 2 ts the mean square noise voltage, that is, the average
value of the square of the noise voltage, across the resistor. k is
Boltzmann's constant:

k : 1.37 X 10-23 joule/degree

Z is the temperature of the resistor in degrees Kelvin, which is the
number of Celsius or centigrade degrees (which are e/s as large as
Fahrenheit degrees) above absolute zero. Absolute zero is -273"

centigrade or - 459" Fahrenheit. R is the resistance of the resistor
rneasured in ohms. W is the band width of the noise in cycles
per second.

Obviously, the band width W depends only on the properties of
our measuring device. If we amplify the noise with a broad-band
amplifier we get more noise than if we use a narrow-band amplifier
of the same gain. Hence, we would expect more noise in a television
receiver, which amplifies signals over a band width of several
million cycles per second, than in a radio receiver, which amplifies
signals having a band width of several thousand cycles Per second.

We have seen that a hot resistor produces a noise voltage. If we

connect another resistor to the hot resistor, electric power will flow
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to this second resistor. If the second resistor is cold, the power will
heat it. Thus, a hot resistor is a potential source of noise power.
What is the most noise power .A/ that it can supply? The power is

r/ - kTW ( 10.2)

In some ways , 10.2 is more satisfactory than 10. 1. For one thing,
it has fewer terms; the resistance R no longer appears. For another
thing, its form is suitable for application to somewhat different
situations.

For instance, suppose that we have a radio telescope, a big
parabolic reflector which focuses radio waves into a sensitive radio
receiver. I have indicated such a radio telescope in Figure X- l.
Suppose we point the radio telescope at different celestial or ter-
restrial objects, so as to receive the electromagnetic noise which
they radiate because of their temperature.

We find that the radio noise power received is given by 10.2,
where T is the temperature of the object at which the radio
telescope points.

If we point the telescope down at water or at smooth grouild,
what it actu ally sees is the reflection of the sky, but if we point it
at things which don't reflect radio waves well, such as leafy trees
or bushes, we get a noise corresponding to a temperature around
290" Kelvin (about 62' Fahrenheit), the temperature of the trees.

If we point the radio telescope at the moon and if the telescope
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is directive enough to see just the moon and not the sky around
it, we get about the same noise, which corresponds not to the
temperature of the very surface of the moon but to the temperature
a fraction of an inch down, for the substance of the moon is some-
what transparent to radio waves.

If we point the telescope at the sun, the amount of noise we
obtain depends on the frequency to which we tune the radio
receiver. If we tune the receiver to a frequency around l0 million
cycles per second (a wave length of 30 meters), we get noise
corresponding to a temperature of around a million degrees Kelvin;
this is the temperature of the tenuous outer corona of the sun. The
corona is transparent to radio waves of shorter wave lengths, just
as the air of the earth is. Thus, if we tune the radio receiver to a
frequency of around l0 billion cycles per second, wg receive radia-
tion corresponding to the temperature of around 8,000' Kelvin,
the temperature a little above the visible surface. Just why the
corona is so much hotter than the visible surface which lies below
it is not known.

The radio noise from the sky is also different at different fre-
quencies. At frequencies above a few billion cycles per second the
noise corresponds to a temperature of about 3.5o Kelvin. At lower
frequencies the noise is greater and increases steadily as the fre-
quency is lowered. The Milky Wuy, particular stars, and island
universes or galaxies in collision all emit large amounts of radio
noise. The heavens are telling the age of the universe through their
3.5 degree microwave radiatiotr, but other signals come from other
places at other frequencies.

Nonetheless, Johnson or thermal noise constitutes a minimum
noise which we must accept, and additional noise sources only
make the situation worse. The fundamental nature of Johnson
noise has led to its being used as a standard in the measurement of
the performance of radio receivers.

As we have noted, a radio receiver adds a certain noise to the
signals it receives. It also amplifies any noise that it receives. We
can ask, how much amplified Johnson noise would just equal the
noise the receiver adds? We can specify this noise by means of an
equivalent noise temperature Tn. This equivalent noise temperature
Tn is a measure of the noisiness of the radio receiver. The smaller
Tn rs the better the receiver is.
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We can interpret the noise temperature Tn in the followitg way.
If we had an ideal noiseless receiver with just the same gain and
band width as the actual receiver and if we added Johnson noise
corresponding to the temperature Tn to the signal it received, then
the ratio of signal power to noise power would be the same for the
ideal receiver with the Johnson noise added to the signal as for
the actual receiver.

Thus, the noise temperature Tnis a just measure of the noisiness
of the receiver. Sometlmes another measure based on Tn rs used;
this is called the noise figure N F. In terms of T* the noise figure is

I,{F -
293 + Tn

293

( 10.3)

Tasrr XIV

I\tF- I + L293

The noise figure was defined for use here on earth, where every
signal has mixed with it noise corresponding to a temperature of
around 293' Kelvin. The noise figure is the ratio of the total output
noise, including noise due to Johnson noise for a temperature of
293" Kelvin at the input and noise produced in the receiver, to the
amplified Johnson noise alone.

Of course, the equivalent noise temperature Tn of a radio receiver
depends on the nature and perfection of the radio receiver, and the
lowest attainable noise figure depends on the frequency of opera-
tion. However, Table XIV below gives some rough figures for
various sorts of receivers.

The effective temperatures of radio receivers and the tempera-

Type of Receiver

Good Radio or TV receiver

Maser receiving station for space missions

Parametric amplifier receiver

Equivalent
Noise Temperature,

Degrees Kelvin

1500'

24"

50"
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tures of the objects at which their antennas are directed are very
important in connection with communication theory, because
noise determines the power required to send messages. Johnson
noise is Gaussian noise, to which equation 9.3 applies. Thus,
ideally, in order to transmit C bits per second, we must have a
signal power P related to the noise power N by a relation that was
derived in the preceditg chapter:

C -  Wlog

If we use expression 10.2 for noise, this becomes

c - wros f$j\
\k rw /

(9.3 )

( 10.4)

Let us assume a given signal power P. If we make W very
small, C will become very small. However, if we make W larger
and larger, C does not become larger and larger without limit, but
rather it approaches a limiting value. When P /kTW becomes very
small compared with unity, 10.4 becomes

v 1.44 P
a -v k T

P - 0.693 kTC

We can also write this

( l0.s)

( 10.6)

Relation 10.6 says that, even when we use a very wide band
width, we nee d at least a power 0.693 kf joule per second to send
one bit per secotrd, so that on the average we must use an energy
of 0.693 kT joule for each bit of information we transmit. We
should remember, however, that equation 9.3 holds only for an
ideal sort of encoding in which many characters representing many
bits of information are encoded together into a long stretch of
signal. Most practical communication systems require rnuch more
energy per bit, as we noted in Chapter IX.

But, haven't we forgotten something? What about quantum
effects? These may not be important in radio, but they are certainly
important in communication by light. And, light has found a wide
range of uses. Tiny optical fibers carry voice and other com-
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munication traffic. Pulses of light reflected from "corner reflectors"
left by astronauts on the moon make it possible to track the earth-
moon distance with an accuracy of about a tenth of a meter.

Harry Nyquist was a very forward-looking man. The derivation
he gave for an expression for Johnson noise applies to all fre-
quencies, including those of light. His expression for Johnson noise
power in a bandwidth W was

N -
hfw

(  10 .7  )
ehf /kr _ |

Here I is frequency in cycles per second and

h -  6 . 6 3  x  1 0 - 3 4

is Planck's constant. We commonly
with the energy of a single photon of

E  -h f

joule/sec.

associate Planck's constant
light, an energy E which is

(  10 .9  )

Quantum effects become important when hl is comparable to or
larger than kf. Thus, the frequency above which the exact expres-
sion for Johnson noise, 10.7 , departs seriously from the expression
valid at low frequencies, I0.2, will be about

f  -  kT  /h_  2 .07  x  1010f (  10.9)

When we take quantum effects into account, we find less not
more noise at higher frequencies, and very much less noise at the
frequency of light. But, there are quantum limitations other than
those imposed by Johnson noise. It turns out that, ideally, 0.693
kZ joules per bit is still the limit, even at the frequency of light.
Practically, it is impossible to approach this limit closely. And,
there is a common but wrong way of communicating which is very
much worse. This is to amplify a weak received signal with the best
sort of amplifier that is theoretically possible. Why is this bad?

At low frequencies, when we amplify a weak pulse we simply
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obtain a pulse of greater power, and we can measure both the time
that this stronger pulse peaks and the frequency spectrum of the
pulse. But, the quantum mechanical uncertainty principle says that
we cannot measure both time and frequency with perfect accuracy.
In fact, if Lt is the error in measurement of time and Lf is the
error in measurement of frequenc/, the best we can possibly do is

a,tLf - 1
A,t = I/Lt

The implication of 10.L0 is that if we define the frequency of a
pulse very precisely by making Lf small, we cannot measure the
time of arrival of the pulse very accurately. In more mundane
terms, we can't measure the time of arrival of a long narrow-band
pulse as accurately as we can measure the time of arrival of a short
broad-band pulse. But, just how are we frustrated in trying to make
such a measurement?

Suppose that we do amplify a weak pulse with the best possible
amplifier, and also shift all frequencies of the pulse down to some
low range of frequencies at which quantum effects are negligible.
We find that, mixed with the amplified signal, there will be a noise
power N

f /  - Ghf W

(  10 .10 )

(  1 0 . 1 1 )

Here I is the frequency of the original high-frequency signal, G is
the power gain of the amplifyirg and frequency shiftitg system and
W is the bandwidth. This noise is just enough to assure that we
don't make measurements more accurately than allowed by the un-
certainty principle as expressed in 10.10.

In order to increase the accuracy of a time measurement, we
must increase the bandwidth W of. the pulse. But, the added noise
due to increasing the bandwidth, as expressed by 10.11, just undoes
any gain in accuracy of measurement of time.

From 10.1 1 we can make the same argument that we made on
page 192, and conclude that because of quantum effects we must
use an energy of at least 0.693 hl joules per bit in order to com-
municate by means of a signal of frequency f . This argument is
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valid only for communication systems in which we amplify the
received signal with the best possible amplifier-an amplifier
which adds to the signal only enough noise to keep us from violat-^
ing the uncertainty principle.

Is there an alternative to amplifying the weak received signal?
At optical frequencies there certainly is. Quanta of light can be
used to produce tiny pulses of electricity. Devices called photo-
diodes and photomultipliers produce a short electrical output pulse
when a quantum of light reaches them-although they randomly
fail to respond to some quanta. The quantum efficiency of actual
devices is less than l00Vo .

Nonetheless, ideally we can detect the time of arrival of any
quantum of light by using that quantum to produce a tiny electrical
pulse. Isn't this contrary to the uncertainty principle? No, because
when we measure the time of arrival of a quantum in this way we
can't tell anything at all about the frequency of the quantum.

Photo detectors, commonly called photon coltnters, are used to
measure the time of arrival of pulses of light reflected from the
corner reflectors that astronauts left on the moon. They are also
used in lightwave communication via optical fibers. Of course they
aren't used as effectively as is ideally possible. What is the ideal
limit? It turns out to be the same old limit we found on page 192,
that is, 0.693 kZ joules per bit. Quantum effects don't change that
limiting performance, but they do make it far more difficult to
attain. Why is this so?

The energy per photon is hl. Ideally, the energy per bit is 0.693
kT. Thus, ideally the bits per photon must be

hf/(0.693 kr)
or

1.44 (hf /kf ) bits per photon

How can we transmit many bits of energy by measuring the time
of arrival of just a few photons, or one photon? We can proceed
in this way. At the transmitter, we send out a pulse of light in one
of. M sub-intervals of some long time interval T. At the receiving
end, the particular time interval in which we receive a photon
conveys the message.



196 Symbols, Signals and Noise

At best, this will make it possible to convey log M bits of in-
formation for each interval T. But, sometimes we will receive no
photons in any time interval. And, sometimes thermal photons-
Johnson noise photons-will arrive in a wrong time interval. This
is what limits the transmission to 1.44 (hf /kT) bits per photon.

In reality, wo can send far fewer bits per photon because it is
impractical to implement effective systems that wilt send very many

, bits per photon.
We have seen through a combination of information theory and

physics that it takes at least A.693 kZ joules of energy to convey
one bit of information.

In most current radio receivers the noise actually present is
greater than the environmental noise because the amplifier adds
noise corresponding to some temperature higher than that of the
environment. Let us use as the noise temperature Tn, the equivalent
noise temperature corresponding to the noise actually added to the
signal. How does actual performance compare with the ideal ex-
pression by equation ( 10.4)?

When we do not use error correction, but merely use enough
signal power so that errors in receiving bits of information are very
infrequent (around one error in 108 bits received), at best we must
use about 10 times as much power per bit as calculated from
expression 10.4.

The most sophisticated communication systems are those used
in sending data back from deep-space missions. These are ex-
tremely low-noise maser receivers, and they make use of sophisti-
cated error correction, including convolutional coding and decoding
using the Viterbi algorithm. In sending pictures of Jupiter and its
satellites back to earth, the Voyager spacecraft could transmit
lI5,2O0 binary digits per second with an error rate of one in 200
by using only 21 .3 watts of power. The power is only 4.4 db more
than the ideal limit using infinite bandwidth.

Pluto is about 6 x 1012 meters from earth. Ideally, how fast
could we send data back from Pluto? We'll assume noise from space

, only, and no atmosphere absorption.
If we use a transmitting antenna of effective arca Ay and a re-

ceiving antenna of effective area A n, the ratio of received power
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Pn to transmitted power Pr is given by Friis's transmission formula

PR ArAo (  10.12)
Pr x2L2

where I is the wavelength used in communication and L is the
distance from transmitter to receiver, which in our case is 6 x 1012
meters.

Purely arbitrarily, we will assume a transmitter power of 10
watts. We will consider two cases. In the first, we use a wavelen$h
of 1 cm or.01 meters. At this wavelength the temperature of space
is indubitably 3.5o K, and we will assume that the transmitting
antenna is 3.16 meters square, with an area of 10 square meters, and
the receiving antenna is 31.6 meters square, with an area of 1,000
square meters. According to expression 10.12, if the transmitted
power is 10 watts the received power will be 2.8 x 10-17 watts or
joules per second. If we take the energy per bit as 0.693 kT,7 as
3.5oK, and use the value of Boltzmann's constant given on page
188, we conclude that our communication system can send us over
800,000 bits per second, a very useful amount of information.

What about an optical communication system? Let us assume a
wavelength of 6 x 10-7 meters, corresponding to a frequency of

5 x L014 cycles per second. This is visible light. We will assume
somewhat smaller antennas (lenses or mirrors), a transmitting
antenna one meter square, with an area of 1 square meter and a
receiving antenna 10 meters square, with an area of 100 square
meters. Again, we will assume a transmitted power of 10 watts.
The effective optical "temperature" of space, that is, the total

starlight, is a little uncertain; we will take it as 350oK. We calculate
a transmission capacity of 800 billion bits per second for our
optical link.

If we receive 800 billion bits per second, we must receive 100
bits per photon. It seems unlikely that this is possible. But even if
we received only one bit per photon we would receive 8 billion
bits/second. Optical communication may be the best way to com-
municate over long distances in space.
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From the point of view of information theory, the most interest-
irg relation between physics and information theory lies in the
evaluation of the unavoidable limitations imposed by the laws of
physics on our ability to communicate. In a very fundamental
sense, this is concerned with the limitations imposed by Johnson
noise and quantum effects. It also, however, includes limitations
imposed by atmospheric turbulence and by fluctuations in the
ionosphere, which can distort a signal in a way quite different from
adding noise to it. Many other examples of this sort of relation of
physics to information theory could be unearthed.

Physicists have thought of a connection between physics and
communication theory which has nothing to do with the funda-
mental problem that communication theory set out to solve, that
is, the possibilities of the limitations of efficient encodirg in trans-
mitting information over a noisy channel. Physicists propose to use
the idea of the transmission of information in order to show the
impossibility of what is called o perpetual-motion machine oJ the
second kind. As a matter of fact, this idea preceded the invention
of communication theory in its present form, for L. Szilard put
forward such ideas in 1929.

Some perpetual-motion machines purport to create energy; this
violates the first law of thermodynamics, this is, the conservation
of energy.

Other perpetual-motion machines purport to convert the dis-
organued energy of heat in matter or radiation which is all at the
same temperature into ordered energy, such as the rotation of a
flywheel. The rotating flywheel could, of course, be used to drive
a refrigerator which would cool some objects and heat others.
Thus, this sort of perpetual motion could, without the use of
additional organized energy, transfer the energy of heat from cold
material to hot material.

The second law of thermodynamics can be variously stated: that
heat will not flow from a cold body to a hot body without the
expenditure of org anrzed energy or that the entropy of a system
never decreases. The second sort of perpetual-motion machine
violates the second law of thermodynamics.

One of the most famous perpetual-motion machines of this
second kind was invented by James Clerk Maxwell. It makes use
of a fictional character called Maxwell's demon.
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I have pictured Maxwell's demon in Figure X-2. He inhabits a
divided box and operates a small door connecting the two cham-
bers of the box. When he sees a fast molecule heading toward the
door from the far side, he opens the door and lets it into his side.
When he sees a slow molecule heading toward the door from his
side he lets it through. He keeps slow molecules from entering his
side and fast molecules from leavirg his side. Soon, the gas in his
side is made up of fast molecules. It is hot, while the gas on the
other side is made up of slow molecules and it is cool. Maxwell's
demon makes heat flow from the cool chamber to the hot chamber.
I have shown him operatirg the door with one hand and thumbirg
his nose at the second law of thermodynamics with his other hand.

Maxwell's demon has been a real puzzler to those physicists who
have not merely shrugged him off. The best general objection we
can raise to him is that, since the demon's environment is at thermal
equilibrium, the only light present is the random electromagnetic
radiation corresponding to thermal noise, and this is so chaotic
that the demon can'tuse it to see what sort of molecules are coming
toward the door.

We can think of other versions of Maxwell's demon. What about
puttin g a spring door between the two chambers, for instance? A
molecule hitting such a door from one side can open it and go
through; one hitting it from the other side can't open it at all.
Won't we end up with all the molecules and their energy on the
side into which the sprirg door opens?

Fig. X-2
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One objection which can be raised to the spring door is that, it
the spring is strotrg, a molecule can't open the door, while, if the
spring is weak, thermal energy will keep the door continually
flappitrB, and it will be mostly open. Too, a molecule will give
energy to the door in opening it. Physicists are pretty well agreed
that such mechanical devices as spring doors or delicate ratchets
can't be used to violate the second law of thermodynamics.

Arguing about what will and what won't work is a delicate
business. An ingenious friend fooled me completely with his
machine until I remembered that any enclosure at thermal equi-
librium must contain random electromagnetic radiation as well as
molecules. However, there is one simple machine which, although
it is frictionless, ridiculous, and certainly inoperable in any prac-
tical sense, is, I believe, not physically impossible in the very special
sense in which physicists use this expression. This machine is
illustrated in Figure X-3.

The machine makes use of a cylind er C and a frictionless piston
P. As the piston moves left or right, it raises one of the little pans
p and lowers the other. The piston has a door in it which can be
opened or closed. The cylinder contains just one molecule M. The
whole device is at a temperature Z The molecule will continually
gain and lose energy in its collisions with the walls, and it will have
an average energy proportional to the temperature.

When the door in the piston is open, no work will be done if we
move the piston slowly to the right or to the left. We start by
centerirg the piston with the door open. We clamp the piston in
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the center and close the door. We then observe which side of the
piston the molecule is on. When we have found out which side of
the piston the molecule is or, we put a little weight from low shelf
,Sr onto the pan on the same side as the molecule and unclamp
the piston. The repeated impact of the molecule on the piston will
eventually raise the weight to the higher shelf 52, &nd we take the
weight off and put it on this higher shelf. We then open the door
in the piston, center it, and repeat the process. Eventually, we will
have lifted an enormous number of little weights from the lower
strelves Sr to the upper shelves Sz. We have done organrzed work
by means of disorganrzed thermal energy!

How much work have we done? It is easily shown that the
average force ̂ F which the molecule exerts on the piston is

IN KT

L

Here Z is the distance from the piston to the end of the cylinder
on the side containing the molecule. When we allow the molecule
to push against the piston and slowly drive it to the end of the
cylinder, so that the distance is doubled, the most work W that the
molecule can do is

w - 0.693 kT ( l 0 . l r )

(  10.10)

Actually, in lifting a constant weight the work done will be less
but 10. I I represents the limit. Did we get this free?

Not quite ! When we have centered the piston and closed the
door it is equally likely that we will find the molecule in either half
of the cylinder. In order to know which pan to put the weight or,
we need one bit of information, specifyirg which side the molecule
is on. To make the machine run we must receive this information
in a system which is at a temperature T. What is the very least
energy needed to transmit one bit of information at the tempera-
ture 7? We have already computed this; from equation 10.6 we
see that it is exactly 0.693 kTjoule, just equal to the most energy
the machine can generate. fn principle, this applies to the quantum
case, if we do the best that is possible. Thus, we use up all the
output of the machine in transmitting enough information to make
the machine run!
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It's useless to argue about the actual, the attarnable, as opposed
to the limiting efficiency of such a machine; the important thing
is that even at the very best we could only break even.

We have now seen in one simple case that the transmission of
information in the sense of communication theory can enable us
to convert thermal energy into mechanical energy. The bit which
measures amount of information used is the unit in terms of which
the entropy of a message source is measured in communication
theory. The entropy of thermodynamics determines what part of
existing thermal energy can be turned into mechanical work. It
seems natural to try to relate the entropy of thermodynamics and
statistical mechanics with the entropy of communication theory.

The entropy of communication theory is a measure of the uncer-
tainty as to what message, among many possible messageS, a
message source will actually produce on a given occasion. If the
source chooses a message from among m eqvally probable mes-
sages, the entropy in bits per message is the logarithm to the base
2 of m; Ln this case it is clear that such messages can be transmitted
by means of log m brnary digits per message. More generally, the
importance of the entropy of communication theory is that it
measures directly the average number of binary digits required to
transmit messages produced by u message source.

The entropy of statistical mechanics is the uncertainty as to what
state a physical system is in. It is assumed in statistical mechanics
that all states of a given total energy are equally probable. The
entropy of statistical mechanics is Boltzmarrn's constant times the
logarithm to the base e of the number of possible states. This
entropy has a wide importance in statistical mechanics. One matter
of importance is that the free energy, which we will call F.E., is
given by

F , E , :  E  -  H T

Here ̂ E is the total energy , H is the entropy, and Z is the tempera-
ture. The free energy is the part of the total energy which, ideally,
can be turned into organized energy, such as the energy of a'
lifted weight.

In order to understand the entropy of statistical mechanics, we
have to say what a physical system is, and we will do this by citing

( 10.12)
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a few examples. A physical system can be a crystalline solid, a
closed vessel containing water and water vapor, a container filled
with gas, or any other substance or collection of substances. We
will consider such a system when it is at equilibrium, that is, when
it has settled down to a uniform temperature and when any physi-
cal or chemical changes that may tend to occur at this temperature
have gone as far as they will go.

As a particular example of a physical systeffi, we will consider
and idealized gas made up of a lot of little, infinitely small particles,
whrzzing around every which way in a container.

The state of such a system is a complete description, or as com-
plete a description as the laws of physics allow, of the positions
and velocities of all of these particles. According to classical
mechanics (Newton's laws of motion), each particle can have any
velocity and energy, so there is an uncounta6ly infinite number of
states, as there is such an uncountable infinity of points in a line
or a square. According to quantum mechanics, there is an infinite
but countable number of states. Thus, the classical case is analo-
gous to the difficult communication theory of continuous signals,
while the more exact quantum case is analogous to the communi-
cation theory of discrete signals which are made up of a countable
set of distinct, different symbols. We have dealt with the theory of
discrete signals at length in this book.

According to quantum mechanics, a particle of an rdeal:u:ed gas
can move with only certain energies. When it has one of these
allowed energies, it is said to occupy a partrcular energl level. How
large will the entropy of such a gas be? If we increase the volume
of the but, we increase the number of energy levels within a given
energy range. This increases the number of states the system can

!e in at a given temperature, and hence it increases the entropy.
Such an increase in entropy occurs if a partition confining a gis
to a portion of a container is removed and the gas is allowed to
expand suddenly into the whole container.

If the temperature of a gas of constant volume is increased, the
particles can occupy energy levels of higher energy, so more com-
binations of energy levels can be occupied; this increases the
number of states, and the ent;opy increases.

If a gas is allowed to expand against a slowly movirg piston and
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no heat is added to the g&S, the number of energy levels in a given

energy range increases, but the temperature of the gas decreases
jmt enough so as to keep the number of states and the entropy
the same.

We see that for a given temperature, a gas confined to a small

volume has less entropy than the same gas spread through a larger
volume. In the case of the one-molecule gas of Figure X-3, the
entropy is less when the door is closed and the molecule is confined
to the ipace on one side of the piston. At least, the entropy is less

if we know which side of the piston the molecule is on.
We can easily compute the decrease in entropy caused by halving

the volume of an ideal, one-molecule, classical gas at a given

temperature. In halving the volume we halve the number of states,
and the entropy changes by an amount

k log, Vz : - 0.693 k

The corresponding change in free energy is the negative of Z times
this change in entropy, that is,

0.693 kr

This is just the work that, according to 10. 11, we can obtain by
halving the volume of the one-molecule gas and then letting it

expand against the piston until the volume is doubled again. Thus,

computing the change in free energy is one way of obtaining 10.1 1.
In reviewing our experience with the one-molecule heat engine

in this light, we see that we must transmit one bit of information
in order to specify on which side of the piston the molecule is. We

must transmit this information against a background of noise
corresponding to the uniform temperature T. To do this takes
0.693 kT joule of energy.

Because we now know that the molecule is definitely on a par-
ticular side of the piston, the entropy is 0.693 k less than it would

be if we were uncertain as to which side of the piston the molecule

was on. This reduction of entropy corresponds to an increase in free

energy of 0.693 kTjoule. This free energy we can turn into work

by aitowing the piston to move slowly to the unoccupied end of

the cylinder while the molecule pushes against it in repeated im-

pacts. At this point the entropy has risen to its original value, and
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we have obtained from the system an amount of work which, alas,
is just equal to the minimum possible ene rgy required to transmit
the information which told us on which side of the piston the
molec.ule was.

Let us now consid er a more complicated case. Suppose that a
physical system has at aparticular temperature a total of m states.
Suppose that we divide these states tnto .n equal groups. The
number of states in each of these groups will be m/ n.

Suppose that we regard the specification as to which one of the
n groups of states contains the state that the system is in as a
message source. As there are n equally likely groups of states, the
communication-theory entropy of the source is tog n bits. This
means that it will take n binary digits to specify the particular
group of states which contains the state the system is actually in.
To transmit this information at a temperature Z requires at least

.693 kT Iog n - kT logu n

joule of energy. That is, the energy required to transmit the message
is proportional to the communication-theory entropy of the mes-
sage source.

If we know merely that the system is in one of the total of m
states, the entropy is

k log,- m

If we are sure that the system is in one particular group of states
containing only m/ n states (as we are after transmission of the
information as to which state the system is in), the entropy is

k log ,L -k ( l og ,m log ,n )- n  \

The change in entropy brought about by information concerning
which one of the n groups of states the system is in is thus

_k log, n

The corresponding increase in free energy is

kT log, n

But this is just equal to the least energy necess ary to transmit the
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information as to which group of states contains the state the
system is in, the information that led to the decrease in entropy
and the increase in free energy.

We can regard any process which specifies something concern-
ing which state a system is in as a message source. This source
generates a message which reduces our uncertainty as to what state
the system is in. Such a source has a ceftain communication-theory
entropy per message. This entropy is equal to the number of binary
digits necess ary to transmit a mess age generated by the source. It
takes a pafiicular energy per binary digit to transmit the message
against a noise corresponding to the temperature T of the system.

The message reduces our uncertainty as to what state the system
is in, thus reducing the entropy (of statistical mechanics) of the
system. The reduction of entropy increases the free energy of the
system. But, the increase in free energy is just equal to the mini-
mum energy necess ary to transmit the message which led to the
increase of free energy , zn energy proportional to the entropy of
communication theory,

This, I believe, is the relation between the entropy of communi-
cation theory and that of statistical mechanics. One pays a price
for information which leads to a reduction of the statistical-
mechanical entropy of a system. This price is proportional to the
communication-theory entropy of the message source which pro-
duces the information. It is always just high enough so that a
perpetual motion machine of the second kind is impossible.

We should note, however, that a message source which generates
messages concerning the state of a physical system is one very
particular and peculiar kind of message source. Sources of Engti_sh
lext or of speech sounds are much more commolt. It seems irrele-
vant to relate such entropies to the entropy of physics, except
perhaps through the energy required to transmit a bit of informa-
tion under highly idealized conditions.

There is one very odd implication of what we have iust covered.

Clearly, the energy needed to transmit information about the state

of a physical system keeps us from ever knowing the past in com-

plete detail. If we can never know the past fully, can we declare

itrat the past is indeed unique? Or, is this a sensible question?
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To summanze, in this chapter we have considered some of the
problems of communicatirg electrically in our actual physical
world. We have seen that various physical phenomena, including
lightnitg and automobile ignition systeffis, produce electrical dis-
turbances or noise which are mixed with the electrical signals we
use for the transmission of messages. Such noise is a source of
error in the transmission of signals, and it limits the rate at which
we can transmit information when we use a particular signal power
and hand width.

The noise emitted by hot bodies (and any body is hot to adegree
if its temperature is greater than absolute zero) is a particularly
simple, universal, unavoidable noise which is important in all com-
munication. But, at extremely high frequencies there are quantum
effects as well as Johnson or thermal noise. We have seen how
these affect communication in the limit of infinite bandwidth, but
have no quantum analog of expression 10.4.

The use of the term entropy in both physics and communication
theory has raised the question of the relation of the two entropies.
It can be shown in a simple case that the limitation imposed by
thermal noise on the transmission of information results in the
failure of a machine designed to convert the chaotic energy of heat
into the organized energy of a lifted weight. Such a machine, if it
succeeded, would violate the second law of thermodynamics. More
generally, suppose we regard a source of information as to what
state a system is in as a message source. The information-theory
entropy of this source is a measure of the energy needed to trans-
mit a message from the source in the presence of the thermal noise
which is necessarily present in the system. The energy used in
transmitting such a message is as great as the increase in free
energy due to the reduction in physical entropy which the message
brings about.



CHAPTER XI Cybernetics

Sor"rs woRDS HAvE a heady quality; they conjure up strong
feelings of awe, mystery, or romance. Exotic used to be Dorothy
Lamour in a sarong. Just what it connotes currently I don't know,
but I am sure that its meanitrg, foreign, is pale by comParison.
Palimpsest makes me think of lost volumes of Solomon's secrets
or of bther invaluable arcane lore, though I know that the word
means nothing more than a manuscript erased to make room for
later writing.

Sometimes the spell of a word or expression is untainted by any
clear and stable meaning, and through all the period of its currency
its magic remains secure from commonplace interpretations. Tao,
ilan vital, and id are,I think, examples of this. I don't believe that
cybernetics is quite such a word, but it does have an elusive quality
as well as a romantic aura.

The subtitle of Wiener's book, Cybernetics, rs Control and Com-
munication in the Animal and the Machine. Wiener derived the
word from the Greek for steersman. Since the publication of
Wiener's book in 1948, cybernetics has gained a wide currency.
Further, if there is cybernetics, then someone must practice it, and
cyberneticist has been anonymously coined to designate such
a person.

What is cybernetics? If we are to judge from Wiener's book it
includes at least information theory, with which we are now
reasonably familiar; something that might be called smoothing,
filtering, detection and prediction theory, which deals with finding

208
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th. presence of and predicting the future value of signals, usually
in the presence of noise; and negative feedback and servomecha-
nism theory, which Wiener traces back to an early treatise on the
governor (the device that keeps the speed of a steam engine con-
stant) published by James Clerk Maxwell in 1868. We must, I
think, also include another field which may be described as
automata and complicated machines. This includes the design and
programming of digital computers.

Finally, we must include any phenomena of life which resemble
anything in this list or which embody similar processes. This brings
to mind at once certain behavioral and regulatory functions of the
body, but Wiener goes much further. In his second autobiographi-
cal volume, I Am a Mathematician, he says that sociology and
anthropology are primarily sciences of communication and there-
fore fall under the general head of cybernetics, and he includes,
as a special branch of sociology, economics as well.

One could doubt Wiener's sincerity in all this only with difficulty.
He had a grand view of the importance of a statistical approaCh
to the whole world of life and thought. For him, a current which
stems directly from the work of Maxwell, Boltzmann, and Gibbs
swept through his own to form a broad philosophical sea in
which we find even the ethics of Kierkegaard.

The trouble is that each of the many fields that Wiener drew
into cybernetics has a considerable scope in itself. It would take
many thousands of words to explain the history, content, and
prospects of any one of them. Lumped together, they constitute
not so much an exciting country as a diverse universe of over-
whelmirg magnitude and importance.

Thus, few men of science regard themselves as cyberneticists.
Should you set out to ask, one after another, each person listed in
Americqn Men oJ Science what his field is, I think that few would
reply cybernetics. If you persisted and asked, o'Do you work in the
field of cybernetics?" a man concerned with communication, or
with complicated automatic machines such as computers, or with
some parts of experimental psychology or neurophysiology would
look at you and speculate on your background and intentions. If
he decided that you were a sincere and innocent outsider, who
would in any event never get more than a vague idea of his work
he might well reply, "yes."
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So far, in this country the word cybernetics has been used most
extensively in the press and in popular and semiliterary, if not
semiliterate, magazines. I cannot compete with these in discussing
the grander aspects of cybernetics. Perhaps Wiener has done that
besi himself in I Am a Mathematician. Even the more narrowly
technical content of the fields ordinarily associated with the word
cybernetics is so extensive that I certainly would never try to
explain it all in one book, even a much larger book than this.

ln this one chapter, however, I propose to try to give some small
idea of the nature of the different technical matters which come
to mind when cybernetics is mentioned. Such a brief rdsuml may
perhaps help the reader in finditg out whether or not he is inter-
ested in cybernetics and indicate to him what sort of information
he should seek in order to learn more about it.

Let us start with the part of cybernetics that I have called
smoothing, filtering, and prediction theory, which is an extremely
importani field in its own right. This is a highly mathematical
su6iect, but I think that some important aspects of it can be made
pretty clear by means of a practical example.

Suppose that we are faced with the problem of using radar data
to point a gun so as to shoot down an airplane. The radar gives
us a sequence of measurements of position each of which is a little

in erroi. From these measurements we must deduce the course and
the velocity of the airplane, so that we can predict its position at
some time in the future, and by shooting a shell to that position,
shoot the plane down.

Suppose that the plane has a constant velocity and altitude.
Then the radar data on its successive locations might be the crosses
of Figure XI-I. We can by eye draw a line AB, which we would
guess to represent the course of the plane pretty well. But how are
we to tell a machine to do this?

If we tell a computing machine, or "computer," to use just the
last and next-to-last pieces of radar data, represented by the points
L and NL, it can only draw a line through these points, the dashed
line A'B' . This is clearly in error. In some way, the computer must
use earlier data as well.

The simplest way for the computer to use the data would be to

give an equal weight to all points. If it did this and fitted a straight
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line to all the data taken together, it might get a result such as that
shown in Figure XI-2. Clearly, the airplane turned at point T and
the straight line AB that the computer computed has little to do
with the path of the plane.

We can seek to remedy this by givirg more importance to recent
data than to older data. The simplest way to do this is by means
of linear prediction. fn makin g a linear prediction, the computer
takes each piece of radar data (a number representing the distance
north or th-e distance east from the radut, f6t instan&; und multi-
plies it by another number. This other number depends on how
recent the piece of data is; it will be a smaller number for an old
piece of dala than for a recent one. The computer then adds up
all the products it has obtained and so produces a predicted piece
of data (for instance, the distance north or east of the radar at some
future time).
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The result of such prediction might be as shown in Figure XI-3.

Here a linear method has been used to estimate a new position and

direction each time a new piece of radar data, represented by a

cross, becomes available. Until another piece of data becomes

avarlable, the predicted path is taken as a straight line proceeding

from the estimated location in the estimated direction. We see that

it takes a long time for the computer to take into account the fact

that the plane has turned at the point T, despite the fact that we

are sure of this by the time we have looked at the point next aftet T.

A linear prediction can make good use of old data, but, if it does

this, it will be slow to respond to new data which is inconsistent

with the old data, as the dataobtained after an aiqplane turns will

be. Or a linear prediction can be quick to take new data strongly

into account, but in this case it will not use old data effectively,

even when the old data is consistent with the new data.
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To predict well even when circumstances change (as when the
airplane turns) we must use nonlinear prediction. Nonlinear pre-
diction includes all methods of prediction in which we don't merely
multiply each piece of data used by u number depending on how
old the data is and then add the products.

As a very simple example of nonlinear prediction, suppose that
we have two different linear predictors, one of which takes into
account the last 100 pieces of data received, and the other of which
takes into account only the last ten pieces of data received. Suppose
that we use each predictor to estimate the next piece of data which
will be received. Suppose that we compare this next piece of data
with the output of each predictor. Suppose that we rnake use of
predictions based on 100 past pieces of data only when, three times
in a row, such predictions agree with each new piece of data better
than predictions based on ten past pieces of data. Otherwise, we
assume that the aircraft is maneuvering in such a way as to make
long-past data useless, and we use predictions based on ten past
pieces of data. This way of arriving at a final prediction is nonlinear
because the prediction is not arrived at simply by multiplying each
past piece of data by a number which depends only on how old
the data is. Instead, the use we make of past data depends on the
nature of the data received.

More generally, there are endless varieties of nonlinear predic-
tion. In fact, nonlinear prediction, and other nonlin ear processes
as well, are the overwhelming total of all very diverse means after
the simplest category, linear prediction and other linear processes,
have been excluded. A great deal is known about linear prediction,
but very little is known about nonlinear prediction.

This very special example of predicting the position of an ar-
plane has been used merely to give a concrete sense of something
which might well seem almost meaningless if it were stated in more
abstract terms. We might, however, restate the broader problem,
which has been introduced in a more general way.

Let us imagine a number of possible signals. These signals might
consist of things as diverse as the possible paths of airplanes ot th.
possible different words that a man may utter. Let .rs ilso imagine
some sort of noise or distortion. Perhaps the radar data is ineiact,
or perhaps the man speaks in a noisy room. We are required to
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estimate some aspect of the correct signal: the present or future

position of the airplane, the word the man just spoke, or the word

ittut he will speali next. In making this judgment we have some

statistical knowledge of the signal. This might concern what air-

plane paths are most likely, or how often turns are made, or how

tttutp ih.y are. It might include what words are most common and

howlhe hkelihood of their occurrence depends on preceditg words.

Letus suppose that we also have similar statistics concerttitg noise

and distortion.
We see that we are considering exactly the sort of data that are

used in communication theory. However, given a source of data

and a noisy channel, the communication theorist asks how he can

best .rrode messages from the source for transmission over the

channel. In prediction, given a set of signals distorted by noise, -\Me

ask, how do we best detect the true signal or estimate or predict

Some aspect of it, such as its value at some future time?

The armory of prediction consists of a general theory of linear

prediction, wbrked out by Kolmogoroff and Wiener, and mathe-

matical analyses of a number of special nonlinear predictors. I

don't feel that I can proceed very profitably beyond this statement,

but I can't resist giving an example of a theoretical result (due to

David Slepian, d mathbmatician) which I find rather startling.

Let us consider the case of a faint signal which may or may not

be present in a strong noise. We want to determine whether or not

the signal is present. The noise and the signal ml8ft be voltages

ot rorittd preisures. We assume that the noise and the sign{ hlve

been ro--bined simply by addirg them together. Suppose further

that the signal and the noise are ergodi c (see Chapter III) and that

they are band limited-that is, they contain no frequencies outside

of a specified frequency range. Suppose further that we know

exactly ttt. frequerry spectrum of the noise, that is, what fraction

of th; noise po*.i fiUs in every small range of freglencies.

Suppose that lttr frequency spectrum of the signal is different

from this. Slepian has iho*n thiat if we could measure the over-all

voltage (or sound pressure) of the signal plT noise exactly for

.rr.tiinstant in ant interval of time, however short the interval is,

*. ioold infallibly tell whether or not the signal was present along

with the noise, no matter how faint the signal might be. This is a
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sound theoretical, not a useful practical, conclusion. However, it
has been a terrible shock to a lot of people who had stated quite
positively that, if the signal was weak enough (and they statedjust
how weak), it could not be detected by eximining th; signal ptut
noise for any particular finite interval of time.

Before leaving this general subject, I should explain why I
described it in terms of flteringand smoothingas wellis prediciton
and detection. If the noise mixed with a signal has a fteqnency
spectrum different from that of the signal, we will help to separate
the signal from the noise by using an electrical filtei which cuts
down on the frequencies which are strongly present in the noise
with _relpect to the frequencies which are-strongly present in the
signal. If we use a filter which removes most or iti ttigh frequency
components (which vary rapidly with time), the output will not
vary so abruptly with time as the input; we will have smoothedthe
combination of signal and noise.

So far, we have been talking about operations which we perform
on a set of data in order to estimate a present or future signal or
to detect a signal. This is, of course, for the purpose of Ooing
something.

We might, for instance, be flying an ailplane in pursuit of an
enemy plane. We might use a radar to see the enemf plane. Every
time we take an observation, we might move the iottttols of the
plane so as to head toward the enemy.

A device which acts continually on the basis of information to
attain a specified goal in the face of changes is called a seruo-
mechanism. Here we have an important new element, for the radar
data measures the position of the enemy plane with respect to our
plane, and the ndar data is used in determining how tire position
of our plane is to be changed. The radar data Is fed bacti rn such
a way as to alter the nature of radar data which will be obtained
later (because the data are used to alter the position of the plane
from which new radar data are taken). The feedback is called
negative feedback, because it is so used as to decrease rather than
to increase any departure from a desired behavior.

We can easily think of other examples of negative feedback. The
governor of a steam engine measures the speed of the engine. This
measured value is used in opening or closirg the throttle so as to
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keep the speed at a predetermined value. Thus, the result of the

measuremint of speed is fed back so as to change the speed. The

thermostat on the wall measures the temperature of the room and

turns the furnace off or on so as to maintain the temperature at a

constant value. When we walk carrying a tray of waier, we may

be tempted to watch the water in the tray and try to tilt the tray

so as to keep the water from spilling. This is often disastrous. The

more we tili the fiay to avoid spilling the water, the more wildly

the water may slosh about. When we apply feedback so as to

change a process on the basis of its observed state, the over-all

situaiion may be unstable. That is, instead of reducing small devia-

tions from the desired goal, the control we exert may make

them larger.
This is a particularly hazardous matter in feedback circuits. The

thing we do to make corrections most complete and perfect is to

make the feedback stronger. But this is the very thing that tends

to make the system unstable. Of course, an unstable system is no

good. An unstable system can result in such behavior as an airplane

or missile veering wildly instead of following the target, the temper-

ature of a room rising and falling rapidly, an engine racing or

coming to a stop, or an amplifier producing a singitg output of

high amplitude when there is no input.
ttre siability of negative-feedback systems has been studied

extensively, and a great deal is known about linear negative-

feedback iystems, in which the present amplitude is the sum of

past amplitudes multiplied by numbers depending only on remote-

ness from the present.
Linear negative-feedback systems are either stable or unstable,

regardless of the input signal applied. Nonlinear feedback systems

can be stable for some inputs but unstable for others. A shimmying

car is an example of a nonlinear system. It can be perfectly stable

at agiven speed on a smooth road, and yet a single bump can start

u shi*my which will persist indefinitely after the bump has been

passed- 
Oddly enough, most of the early theoretical work on negattVe-

feedback systems was done in connection with a device which has

not yet been described. This is the negative feedback amplifier,

which was invented by Harold Black in 1927.
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The gain of an amplifier is the ratio of the output voltage to the
input voltage. fn telephony and other electronic arts, it is important
to have amplifiers which have a very nearly constant gain. How-
ever, vacuum tubes and transistors are imperfect devices. Their
gain changes with time, and the gain can depend on the strength
of the signal. The negative feedback amplifier reduces the effect
of such changes in the gain of vacuum tubes or transistors.

We can see very easily why this is so by examining Figure XI-4.
At the top we have an ordinary amplifier with a garn of ten times.
If we put in I volt, as shown by the number to the left, we get out
l0 volts, as shown by the number to the right. Suppose the gain
of the amplifier is halved, so that the gain is only five times, as
shown next to the top. The output also falls to one half, or 5 volts,
in just the same ratio as the gain fell.

The third drawing from the top shows a negative feedback
amplifier designed to give a gain of ten times. The upper box has

|  |  x to  I  t o

| _! t5 l_ 5

o . f  B f  g
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a high gain of one hundred times. The output ol thlt box is con-

nectid io u very accurate voltage-dividing box, which contains no

tubes or transistors and does not change with time or signal level.

The input to the upper box consists of the input voltage of I volt

less tha output of the lower box, which is 0.09 times the output

voltage of l0 volts; this is, of course, 0.9 volt.

Now, suppose the tubes or transistors in the upper box change

so that they glve a gain of only fifty times instead of one hundred

times; thiiiJshown at the bottom of Figure XI-4. The numbers

given in the figure are only approximate, but we see that when the

[ain of the upper box is cut in half the output voltage falls only

ibout l0 peri-ent. If we had used a higher gain in the upper box

the effect would have been even less.
The importance of negative feedback can scarcely be over-

estimated. Negative feedback amplifiers are essential in telephonic

communication. The thermostat in your home is an example of

negative feedback. Negative feedback is used to control chemical

pt6..rsing plants and to guide missiles toward airplanes. Th.
automatic pitot of an aircraft uses negative feedback in keeping

the plane on course.
In a somewhat broader sense, I use negative feedback from eye

to hand in guiding my pen across the paper, and negative feedback

from ear to tongue and lips in learning to speak or in imitatitg

the voice of anoiher. The animal organism makes use of negative

feedback in many other ways. This is how it rnaintains its tempera-

ture despite changes in outside temperature, and how it maintains

constant chemical properties of the blood and tissues. The ability

of the body to miintain a narrow range of conditions despite

environmental changes has been called homeostasis.

G. Ross Ashby, one of the few self-acknowledged cyberneticists,
built a machine called a homeostat to demonstrate features of

adjustment to environment which he believes to be characteristic

of nfe. The homeostat is provided with a variety of feedback

circuits and with two means for changing them. One is under the

control of the homeostat; the other is under the control of a person

who acts as the machine's 'oenvironment." If the machine's circuits

are so altered by changes of its "environment" as to make it

unstable, it readjusts its circuits by trial and error so as to attain

stability again.
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We may if we wish liken this behavior of the homeostat to that
of a child who first learns to walk upright without falling and then
learns to ride a bicycle without falling or to many otlier adjust-
ments we make in life. In his book Cybernetics, Wiener puts great
emphasis on negative feedback as an element of nervous control
and on its failure as an explanation of disabilities, such as tremors
of the hand, which are ascribed to failures of a negative feedback
system of the body.

We have so far discussed three constituents of cybernetics:
information theory, detection and prediction, includirg smoothing
and filtering, and negative feedback, including servomechanisms
and negative feedback amplifiers. We usually also associ ate elec-
tronic computers and similar complex devices with cybernetics.
The word automata is sometimes used to refer to such complicated
machirres.

One can find many precursors of today's complicated machines
in the computers, autom ata, and other mechanisms of earlier
centuries, but one would add little to his understanding of today's
gomplex devices by studying these precursors. Human beings learn
by doing and by thinking about what they have done. The oppor-
tunities for doing in the field of complicated machines have-been
enhanced immeasurably beyond those of previous centuries, and
the stimulus to thought has been wonderful to behold.

Recent advances in complicated machines might well be traced
to the invention of automatic telephone switchirg late in the last
century. Early telephone switchirg systems were of a primitive,
step-by-step form, in which a mechanism set up a new section of
a link in a talking path as each digit was dialed.From this, switch-
itg systems have advanced to become common-control systems. In
a common-control switchirg system, the dialed number does not
operate switches directly. It is first stored, or represented elec-
trically or mechanically, in a particular portion ol the switching
system. Electrical apparatus in another portion of the switching
systern then examines different electrical circuits that could be used
to connect the calling pafiy to the number called, until it finds one
that is not in use. This free circuit is then used to connect the calling
party to the called party.

Modern telephone switchirg systems are of bewildering com-
plexity and overwhelming size. Linked together to form a nation-
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wide telephone network which allows dialing calls clear across the

country, ihey areby far the most complicated construction of man.

lt wouid tuk" many words to explain how they perform even a few

of their functions. Today, a few pulls of a telephone dial will cause

telephone equipment to seek out the most economical available

path to a diJtant telephone, detouring from city to city if direct

paths are not available. The equipment will establish a connection,

iittg the part/, time the call, and record the charge in suitable units,

uttd it will disconnect the circuits when a party hangs up. It will

also report malfunctioning of its parts to a central location, and it

contin.res to operate despite the failure of a number of devices.

One important component of telephone switchitg systems is the

electric ,ilay. The principal elements of a relay are an electro-

magnet, a magnetic bar to which various movable contacts ate

attiched, and fixed contacts which the movable contacts can

touch, thus closing circuits. When an electric current is passed

through the coil ol the electromagnet of the relay, the magnetic

bar is ittracted and moves. Some moving contacts move away from

the corresponding fixed contacts, opening circuits; other moving

contacts are brought into contact with the corresponding fixed

contacts, closing circuits.
In the thirties-, G. R. Stib rtz of the Bell Laboratories applied the

relays and other components of the telephone art to build a com-

ptei calculator, whicli could add, subtract, multiply, and divide

.o*plex numbers. During World War II, a number of more com-

plicated relay computers were built for military purpotgt by the

bel Laboraiories, while, in 1941, Howard Aiken and his co-

workers built their first relay computer at Harvard.
An essential step in increasing the speed of computers *?t

taken shortly after the war when J. P. Eckert and J. W. Mauchly

built the Eniac, a vacuum tube computer, and more recently

transistors have been used in place of vacuum tubes.
Thus, it was an essential part of progress in the field of complex

machines that it became possible to build them and that they were

built, first by using relais and then by using vacuum tubes and

transistors.
The building of such complex devices, of course, involved more

than the existence of the elements themselves; it involved their
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interconnection to do particular functions such as multiplication
and division. Stibitz's and Shannon's application of Boolean alge-
bra, a branch of mathematical logic, to the description and design
of logic circuits has been exceedingly important in this connection.

Thus, the existence of suitable components and the art of inter-
connecting them to carry out particular functions provided, so to
speak, the body of the complicated machine. The organtzation, the
spirit, of the machine is equally essential, though it would scarcely
have evolved in the absence of the body.

Stibitz's complex calculator was almost spiritless. The operator
sent it pairs of complex numbers by teletype, and it cogitated and
sent back the sum, difference, product, or quotient. By 1943,
however, he had made a relay computer which received its instruc-
tions in sequence by means of a long paper tape, or program, which
prescribed the numbers to be used and the sequences of operations
to be performed.

A step forward was taken when it was made possible for the
machine to refer back to an earlier part of the program tape on
completing a pafi of its over-all task or to use subsidiury tapes to
help it in its computations. In this case the computer had to make
a decision that it had reached a certain point and then act on the
basis of the decision. Suppose, for instance, that the computer was
computing the value of the followirg series by adding up term
after term:

I  Y 3 + Y s  V t + Y g  Y r t + . . .

We might program the computer so that it would continue adding
terms until it encountered a term which was less than | / 1,000,000
and then print out the result and go on to some other calculation.
The computer could decide what to do next by subtracting the
latest term computed from | / 1,000,000. If the answer was negative,
it would compute another term and add it to the rest; if the
answer was positive, it could print out the sum arrived at and refer
to the program for further instructions.

The next big step in the history of computers is usually attributed
to John von Neumann, who made extensive use of early computers
in carryitg out calculations concerning atomic bombs. Even early
computers had memories, ot stores, in which the numbers used in
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intermediate steps of a computation were retained for further

processing and in which answers were stored prior to printing them

out. Von Neumann's idea was to put the instructions, or program,

of the machine, not on a separate paper tape, but right into the

machine's memory. This made the instructions easily and flexibly

available to the machine and made it possible for the machine to

modify parts of its instructions in accordance with the results of

its computations.
In old-fashioned desk calculating machines, decimal digits were

stored on wheels which could assume any of ten distinct positions

of rotation. In today's desk and hand calculators, numbers are

stored in binary form in some of the tens of thousands of solid-

state circuit elements gf a large-scale integrated circuit chip. To

retain numbers in such storage, electric power (a minute amount)

must be supplied continually to the integrated circuit. Such storage

of data is sometimes called volatile (the data disappears when

power is interrupted). But, volatile storage can be made very re-

liable by guarding against interruption of Power.
Magnetic core memory-arrays of tiny rings of magnetic material

with wires threaded through them provide nonvolatile metnory in

computers larger than hand calculators and desk calculators. An

interruption of power does not change the magnetization of the

cores, but an electric transient due to faulty operation can change

what is in memory.
Integrated circuit memory and core memory are random access

memory. Any group of binary digits (a byte is 8 consecutive digits),

or a word (of 8, 16,32 or more digits) can be retrieved in a frac-

tion of a microsecond by sending into the memory a sequence of

binary digits constituting an address. Such memory is called

random access storage.
In the early days, sequences of binary digits were stored as holes

punched in paper tape. Now they are stored as sequences of

magnetized patterns on magnetic tape or magnetic disks. Cassettes

similar to or identical with audio cassettes provide cheap storage

in small "recreational" computers. Storage on tape, disk or cassette

is sequential; one must run past a lot of bits or words to get to the

one you want. Sequential storage is slow compared with random

access storage. It is used to store large amounts of data, or to
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store programs or data that will be loaded into fast, random
access storage repeatedly. Tape storage is also used as back up
storage, to preserve material stored in random access storage and
disk storage that might be lost through computer malfunction.

Besides memory or storage, computers have arithmetic units
which perform various arithmetical and logical operations, index
registers to count operations, input and output devices (keyboards,
displays and printers ) control units which give instructions to other
units and receive data from them, and can have many specialized
pieces of hardware to do specialized chores such as doing floating
point arithmetic, performing Fourier analyses or inverting matrices.

The user of a computer who wishes it to perform some useful or
amusing task must write a program that tells the computer in ex-
plicit detail every elementary operation it must go through in
attaining the desired result. Because a computer operates internally
in terrns of binary numbers, early programmers had to write out
long sequences of binary instructions, laboriously and fallibly.

But, a computer can be used to translate sequences of letters and
decimal digits into strings of binary digits, accordirg to explicit
rules. Moreover, subroutines can be written that will, in effect, cause
the computer to caffy out desirable operations (such as dividing,
taking square root, and so on ) that are not among the basic com-
mands or functions provided by the hardware. Thus, assemblers
or assembly language was developed. Assembly language is called
machine language, though it is one step removed from the binary
numbers that are stored in and direct the operations of the
hardware.

When one writes a program in assembly language, he still has to
write every step in sequence, though he can specify that various
paths be taken through the program depending on the outcome of
one step (wheth er a computed number is larger than, smaller than
or equal to another, for example) . But, the numbers he writes are
in decimal form, and the instructions are easily remembered se-
quences of letters such as CLA (clear add, a command to set the
accumulator to zero and add to it the number in a specified memory
location).

Instructing a computer
laborious task. Computers

in machine (assembly) language is a
are practical because they have operat-
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irg systems, by means of which a few simple instructions will cause

data to be read in, to be read out, perform other useful functions,

and because programs (even operating systems themselves) are

written in a higher-order language.
There are many higher-order languages. Fortran (formula trans-

lation) is one of the oldest and most persistent. It is adapted to
numerical problems. A line of Fortranmight read

40 IF SrN(X) < M THEN 80

The initial number 40 is the number of the program step. It

instructs the computer to go to program step 80 if sin x is less

thanM.
Basic is a widety used language similar to but somewhat simpler

than Fortran. The C language is useful in writing operating systems

as well as in numerical calculations. Languages seem to be easiest

to use and most efficient (in computer running time) when they

are adapted to particular uses, such as numerical calculations or

text manipulation or running simulations of electrical or mechani-

cal or economic systems.
One gets from a program in a higher-order language to one in

machine language instructions by means of a compiler, which trans-

lates a whole program, or by an interpreter, which translates the

program line by line. Compilers are more efficient and more com-

mon. One writes programs by means of a text editor (or editing

program ) which allows one to correct mistakss-fe revise the pro-

gram without keying every symbol in afresh.
Today many children learn to program computers in grade

school, more in high school and more still in college. You can't

get through Dartmouth and some other colleges without learnitg

to use a computer, even if you are a humanities maior.

More and more, computers are used for tasks other than scien-

tific calculations or keeping books. Such tasks include the control

of spacecraft and automobile engines, the operation of chemical

plants and factories, keeping track of inventor/, making airline

and hotel reservations, making word counts and concordances,

analyzirg X-ray data to produce a three-dimensional image (CAT

- computer-aided tomography), composing (bad) music, Pro-
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ducing attractive musical sounds, producing engaging animated
movies, playing games, new and old, includirg chess, reading
printed or keyed-in text aloud, and a host of other astonishing
tasks. Through large-scale integration, simple computers have
become so cheap that they are incorporated into attractive toys.

While children learn a useful amount of programming with little
difficulty, great talent and great skill are required in order to get
the most out of a computer or a computerlike device, or to accom-
plish a given task with a smaller and cheaper computer.

Today, far more money and human effort are spent in producing
software (that is, programs of all sorts) than are spent on the
hardware the programs run on. One talented programmer can
accomplish what ten or a hundred merely competent programmers
cannot do. But, there aren't enough talented programmers to go
around. fndeed, programmers of medium competence are in short
supply.

Even the most talented programmers haven't been able to make
computers do some things. In principle, a computer can be pro-
grammed to do anything which the programmer understands in
detail. Sometimes, of course, a computation may be too costly or
too time-consuming to undertake. But often we don't really know
in detail how to do somethirg. Thus, things that a computer has not
done so far include typing out connected speech, translating satis-
factorily from one language to another, identifying an important
and interesting mathematical theorem or composing interesting
music.

Efforts to use the computer to perform difficult tasks that are
not well understood has greatly stimulated human thought concern-
itg such problems as the recognition of human words, the structure
of languege, the strategy of winning games, the structure of music
and thq processes of mathematical proof.

Further, the programming of cbmputers to solve complicated
and unusual problems has given us a new and objective criterion
of understanding. Today, if a man says that he understands how
a human being behaves in a given situation or how to solve a
certain mathematical or logical problem, it is fair to insist that he
demonstrate his understanding by programming a computer to
imitate the behavior or to accomplish the task in question. If he
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is unable to do this, his understanding is certainly incomplete, and
it may be completely illusory.

Will computers be able to think? This is a meaningless question
unless we say what we mean by to think. Marvin Minsky, a free-
wheeling mathematician who is much interested in computers and
complex machines, proposed the followirg fable. A man beats
everyone else at chess. People sa), "How clever, how intelligent,
what a marvelous mind he has, what a superb thinker he is." The
man is asked, "How do you play so that you beat everyone?" He
says, "I have a set of rules which I use in arrivirg at my next move."
People are indignant and sa), "Why that isn't thinking at all; it's
just mechanical."

Minsky's conclusion is that people tend to regard as thinking
only such things as they don't understand. I will go even further
and say that people frequently regard as thinking almost any
grammatical jumblirg together of 'oimportant" words. At times I'd
settle for a useful, problem-solving type of "thinking," even if it was
mechanical. In any event, it seems likely that philosophers and
humanists will manage to keep the definition of thinking peqpetu-
ally applicable to human beings and a step ahead of anything a
machine ever manages to do. If this makes them huppy, it doesn't
offend me at all. I do think, however, that it is probably impossible
to specify a meaningful and explicitly defined goal which a man
can attain and a computer cannot, even includitg the "imitation
game" proposed by A. M. Turing, a British logician, in 1936.

In this game a man is in communication, say by teletype, with
either a computer or a man, he doesn't know which. The man tries
by means of questions to discover whether he is in touch with a
man or a machine; the computer is programmed to deceive the
man. Certainly, however, a computer programmed to play the
imitation game with any chance of success is far beyond today's
computers and today's art of programmirg, and it belongs to a very
distant future, if to any.

We have seen that cybernetics is a very broad field indeed. It
includes communication theory, to which we are devoting a whole
book. It includes the complicated field of smoothing and predic-
tion, which is so important in radar and in many other military
applications. When we try to estimate the true position or the
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future position of an airplane on the basis of imperfect radar data,
we ate, accordirg to Wiener, dealing with cybernetics. Even in
using an electrical filter to sep arate noise of one frequency from
signals of another frequenc), we are invoking cybernetics.

It is in this general field that the contribution of Wiener himself
was greatest, and his great work was a general theory of prediction
by means of linear devices, which makes a prediction merely by
multiplying each piece of data by a number which is smaller the
older the data is and adding the products.

Another part of cybernetics is negative feedback. A thermostat
makes use of negative feedback when it measures the temperature
of a room and starts or stops the furnace in order to make the
temperature conform to a specified value. The autopilots of air-
planes use negative feedback in manipulating the controls in order
to keep the compass and altimeter readings at assigned values.
Human beings use negative feedback in controlling the motions
of their hands to achieve certain ends.

Negative feedback devices can be unstable; the effect of the
output can sometimes be to make the behavior diverge widely
from the desired goal. Wiener attributes tremors and some other
malfunctioning of the human being to improper functioning of
negative feedback mechanisms.

Negative feedback can also be used in order to make the large
output signal of an amplifier conform closely in shape to the small
input. Negative feedback amplifiers were extremely important in
communication systems long before the duy of cybernetics.

Finall),.cybernetics has laid claim to the whole field of automata
or complex machines, includirg telephone switchirg systems,
which have been in existence for rnany years, and electronic
computers, frhich have been with us only since World War II.

If all this is So, cybernetics includes most of the essence of
modern technology, excludirg the brute producton and use of
power. It includes our knowledge of the organrzatton and function
of man as well. Cybernetics almost becomes another word for all of
the most intriguitg problems of the world. As we have seen,
Wiener includes sociological, philosophical, and ethical problems
among these.

Thus, even if a man acknowledged bei ng a cyberneticist, that
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wouldn't give us much of a clue concerning his field of competence,
unless he was a universal genius. Certainly, it would not necessarily
indicate that he had much knowledge of information theory.

Happily, as I have noted, few scientists would acknowledge
themselves as cyberneticists, save perhaps in talking to those whom
they regard as hopelessly uninformed. Thus, if cybernetics is over-
extensive or vague, the overextension or vagueness will do no real
harm. Indeed, cybernetics is a very useful word, for it can help to
add a little glamor to a person, to a subj ect, or even to a book. I
certainly hope that its presence here will add a little glamor to
this one.



cHAPTER XII Information Theory
and Ptycholog

I HAVE READ a good deal more about information theory and
psychology than I can or care to remember. Much of it was a mere
association of new terms with old and vague ideas. Presumably
the hope was that a stirrirg in of new terms would clarify the old
ideas by u sort of sympathetic magic.

Some attempted applications of information theory in the field
of experimental psychology have, however, been at least reasonably
well informed. They have led to experiments which produced
valid data.It is hard to draw any conclusions from these data that
are both sweepirg and certain, but the data do form a basis or at
least an excuse for interesting speculations. In this chapter, I
propose to discuss some experiments concerning information
theory and psychology which are at least down-to-earth enough
to grapple with. Naturally I have chosen these largely on the basis
of my personal interest and background, but one has to impose
some limitations in order to say anything coherent about a broad
and less than pellucid field.

It seems to me that an early reaction of psychologists to infor-
mation theory was that, as entropy is a wonderful and universal
measure of amount of information and as human beings make use
of information, in some way the difficulty of a task, perhaps the
time a man takes to accomplish a set task, must be proportional
to the amount of information involved.

229
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This idea is very clearly illustrated in some experiments reported
by Ray Hyman, an experimental psychologist, in the Journal of
Experimental Psychologt tn 1953. Here I shall describe only one
of several of the experiments Hyman made.

A number of lights were placed before a subject, as psychologists
call an experimentee or laboratory human animal. Each light was
labeled with a monosyllabLc "rLame" with which the subject became
familiar. After a warning signal, one of the several lights flashed,
and the subject thereafter spoke the name of the light as soon as
he could. The time interval between the flashing of the light and
the speaking of the name was measured.

Sometimes one out of eight lights flashed, the light being chosen
at random with equal probabilities. In this case, the information
conveyed in enabling the subject to identify the light correctly was
log 8, or 3 bits. Sometimes one among 7 light flashed (2.81 bits),
sometimes among 6 (2.58 bits), sometimes one out of 5 (2.32 bits),
one out of 4 (2.00 bits), one out of 3 (1.58 bits), one out of 2 (l bit),
or one out of I (0 bits). The average response time, or latency,
between the lighting of the light and the speaking of its name was
plotted against number of bits, as shown in Figure XII-I.

Clearly, there is a certain latency, or response time, even when
only one light is used, the choice among lights is certain, and the
information conveyed as to which light is lighted is zero. When
more lights are used, the increase in latency is proportional to the
information conveyed. Such an increase of latency with the loga-
rithm of the number of alternatives had in fact been noted by u
German psychologist, J. Merkel, in 1885. It is certainly u strikingly
accurate, reproducible, and a significant aspect of human response.

We note from Figure XII-I that the increase in latency is about
0.15 second per bit. Some unwary psychologists have jumped to
the conclusion that it takes 0.15 second for a human being to
respond to I bit of information; therefore, the information capacity
of a human being is about 1/ .15, or about 7 bits per second. Have
we discovered a universal constant of human perception or of
human thought?

Clearly, in Hyman's experiment the increase in latency is pro-
portional to the uncertainty of the stimulus measured in bits.
However, various experiments by various experimenters give
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somewhat different rates of increase in seconds per bit. Moreover,
data published by G. H. Mowbray and M. V. Rhoades in 1959
show that, after much practice, a subject's performance tends to
change so that there is little or no effect of information content
on latency. It appears that human beings may have different ways
of handling information, a way used in learnirg, in which number
of alternatives is very important, and a way used after much learn-
ing, in which number of alternatives, up to a fairly large number,
makes little difference. Further, in one sort of experiment, in which
a subject depresses one or more keys on which his fingers rest in
response to a vibration of the key, it appears that there may be
little increase in latency with amount of information right from
the start.
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Moreover, even if the latency were a constant plus an increment
proportional to information content, one could not reasonably
assert that this showed that a significant information rate can be
obtained by dividing the increased time by the number of bits. We
will see that this can lead to fantastic information rates in the sort
of experiment which I shall describe next.

H. Quastler made early information-rate experiments in which
subjects played random sequences of notes or chords or read lists
of randomly chosen words as rapidly as possible, and J. C. R.
Licklider did early work on both reading and pointing speed.
Before we heard of this work, J. E. Karlin and I embarked on an
extensive series of experiments on reading lists of words, which of
all experiments gives the highest observed information rate, a rate
which is much higher than, for instance, sending Morse code
or typitg.

Suppose the 'osend er" of the message chooses an alphabet of ,
sa], 16 words and makes up a list by choosing words among these
randomly and with equal probabilities. Then, the amount of choice
in designating each word is log 16, or 4 bits. The subject "trans-
mits" the information, translating it into a new form, speech rather
than print, by reading the list aloud. If he can read at a rate of 4
words a second, for instance, he transmits information at a rate
of 4 X 4, or 16 bits per second.

Figure ){II-} shows data from three subjects. The words were
chosen from the 500 most common words in English. We see that
while the reading rate drops somewhat in going from 2 to 4 word
vocabularies (or from I to 2 bits per word), it is almost constant
for vocabularies or alphabets containing from 4 to 256 words
(from 2 to 8 bits per word).

Let us now remember the alleged means for getting an infonna-
tion rate from such data as Hyman's, that is, notitg the increase
in time with increase in bits per stimulus. Consider the dotted
average data curve of Figure XII-2. In going from 2 bits per
stimulus to 8 bits per stimulus the reading rate doesn't decrease
at all; that is, the change in reading time per word is 0, despite an.
increase of 6 in the number of bits per word. If we divide 6 by 0,
we get an information rate of infinity! Of course, this is ridiculous,
but it is scarcely more ridiculous than deducitg an information
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rate from such data as Hyman's by dividing increase in number of
bits by increase in latency.

Directly from Figure XII-Z, we can see that as rea der A reads
8-bit words at a rate of 3.8 per second, he manages to transmit
information at a rate of 8 X 3.8, or about 30 bits per second.
Moreover, when the words put in the list are chosen randomly from
a 5,000 word dictionary (12.3 bits per word), he manages to read
them at a rate of 2.7 per second, giving a higher information rate
of 33 bits per second.

It is clear that no unique information rate can be used to describe
the performance of a human being. He can transmit (and, we shall
see, respond to or remember) information better under some
circumstances than under others. We can best consider him as an
information-handling channel or device having certain built-in
limitations and properties. He is a very flexible device; he can
handle information quite well in a variety of forms, but he handles
it best if it is propedy encoded, properly adjusted to his capabilities.

What are his capabilities? We see from Figure XII-} that he is
slowed down only a little by increasing complexity. He can read
a list of words chosen randomly from an alphabet of 256 about as
fast as words chosen from an alphabet of 4. He isn't very speedy
compared with machines, and in order to make him perform well
we must give him a complex task. This is just what we might
have expected.

Complexity eventually does slow him down, however, as we see
from the points for an alphabet consisting of all the words in a
5,000 word dictionary.Perhaps there is an optimum alphabet or
vocabulary, which has quite a number of bits per word, but not
so many words as to slow a man down unduly. Partly to help in
finding such a vocabulary, Karlin and I measured reading rate as
a function of both number of syllables and "fami[ artty," that is,
whether the word came from the first thousand in order of
commonness of occurrence or famili anty, from the tenth thou-
sand, or from the nineteenth thousand. The results are shown
in Figure XII-3.

We see that while an increase in number of syllables slows down
reading spee d, & decrease in famili arrty has just as pronounced an
effect. Thus, a vocabulary of familiar one syllable words would
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seem to be a good choice. Using the 2,500 most common mono-

syllables (2,50b words means I 1.3 bits per word) as a "preryrred

vocabulary," a reader attained a reading speed of 3.7 words per

second, giving an information rate of 42 bits per second.
"scrambled prose," that is, words chosen with the same prob-

abilities as in nontechnical prose but picked at random without

grarnmatical connection, also gave a high information rate. The

entropy is about I 1.8 bits per word, the highest readitg rate was

3.7 wbiOs per second, and the corresponding information rate is

44 bits per second.
Perhips one could gain a little by improving the alphabet, but

I don't think one would gain much. At any rate, these experiments
gave the highest information rate which has been demonstrated.
it is a rate slow by the standards of electrical communication, but

it does represent a tremendous number of binary choices-around
2,500 a minute!

What, we may ask, limits the rate? Is it reading through each
word letter by letter? In this case the Chinese, who have a single

sign for each word, might be better off. But Chinese who read both

English and Chinese with facility read randomrzed lists of common
Chinese characters and randomized lists of the equivalent English
words at almost exactly the same speed.

Is the limitation a mechanical one? Figure XII-4 shows rates for

several tasks. A man can repeat a memorized phrase over twice

as fast as he can read randomized words from the preferred list,

and he can read prose appreciably faster. It appears that the

limitation on readit g rate is mental rather than mechanical.
So far, it appears that we cannot charac terrze a hurnan being

by means of i particular information rate. While the difficulty of

a task ultimateiy increases with its information content, the diffi-

culty depends markedly on how well the task is tailored to human

abilities. the human being is very flexible in ability, but he has to

strain and slow down to do unusual things. And he is quite good

at complexity but only fair at speed.
One way of tailoring a task to human abilities is by deliber?t",

thougntfui experiments. This is analogous to the process of so

ercodirg mesiages from a mess a1e source as to attatn the highest

possible rate of information transmission over a noisy channel.
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This was discussed in Chapter VIII, and the highest attainable
rate was called the channel capacity. The "preferred list" of the
2,500 most frequently used monosyllables was devised in a delib-
erate effort to attain a high information rate in reading aloud
randomaed lists of words.

We may note, however, that choosing words at random with the
probabilities of their occurrence in English text gives as high or a
little higher information rate. Have the words of the English lan-
guage and their frequencies of occurrence been in some way fitted
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to human abilities by u long process of unconscious experiment

and evolution?
We have seen in Chapter V that the probability of occurrence

of a word in English teit is very nearly inversely proportional to

its rank. That is, the hundredth most common word occurs about

a hundredth as frequently as the most common word, and so on.

Figure V-2 illustrates thii relation, which was first pointed out by

GJorge Kingsley Zipf,who ascribed it to a principle.of least effort.

Clelrly, i,tpf't liw cannot be entirely correct in this simple

form. We saw in Chapter V that word probabilities cannot be

inversely proportional [o the rank of the word for all words; if they

were, the-sum of the probabilities of all words would be greater

than unity. There have been various attempts to modify, derive,

and explainZipf's law, and we will discuss these somewhat later.

Howeu-er, we will at first regard Zipf's law in its original and

simplest form as an approximate description of an aspect of human

behavior in generatilA langua ga, & description which Z\pf arrived

at empiricalV by examining the statistics of actual text.

Zipf,as we have noted, associated his law with a prilciple of least

effoit. Attempts have been made to identify the effort or "cost"

of producing text with the number of letters in text. However,

-oit linguiJtr t"gard language primarily as the spoken language,

and it seems unlikely that speaking, reading, or writing habits are

dictated primarily by the numbers of letters used in words.

In fact, we noied in the information-rate experiments which we

just considered that readin g rates are about the same for common

Chinese ideographs and for the equivalent words in Engllsh_wlitten

out alphabettally. Further, we have noted from Figure XII-3 that

commonness or familiarity has an influence on reading time as

great as does number of sYllables.v 
Could we not, perh&ps, lake reading time as a measure of effort?

We might think, for instance, that common words are more easily
accessible to us, that they can be recognized or called forth with

less effort or cost than uncommon words. Perhaps the human brain
is so organtzed that a few words can be stored in it in such a
fashion that they can be rec ognLzed and called forth easily and that
many more can be stored in a fashion which makes their use less
easy. We might believe that reading time is a measure of acces-
sibility, ease of use, of cost.
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We might imagine, further, that in using language, human beings
choose words in such a way as to transmit as much information
as possible for a given cost. If we identify cost with time of utter-
ance, we would then say that human beings choose words in such
a way as to convey as much information as possible in a given
time of speaking or in a given time of readirg aloud.

It is an easy mathematical task to show that if a speaking time
/" is associated with the rth word in order of commonness, then
for a message composed of randomly chosen words the informa-
tion rate will be greatest if the rth word is chosen with a probability
p (r) given by

p(r)  -  2-"t ,

Here c is a constant chosen to make the sum of the probabilities
for all words add up to unity. This mathematical relation says that
words with a long reading time will be used less fiequently than
words with a short reading timeo and it gives the exact relation
which must hold if the information rate is to be maximved.

Now, if Zipf 's law holds, the probability of occurrence of the
rth word in order of commonness must be given by

p(r) _ (12.2)

Here A is another constant. Thus, from l2.l and 12.2 we must have

2-"t, (t2.3)

4
r

(12.1)

( t2.4)

A
r

By using a relation given in the
re-expressed l:JA E, fj t

t r :  A  +

Appe+dix, this relation can be
-  c t r

b l o g r

Here a and b are constants which must be determined by exam-
ining the relation of the reading time t, and the order of common-
ness or rank of a word, r.If Zipt's law is true and if the information
rate is maximized for words chosen randomly and independently
with probabilities given by Zipf 's law, then relation li.4 should
hold for experimental data.

Of course, words aren't chosen randomly and independently in
constructing English text, and hence we cannot say that word
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probabilities in accord with relation l2.l actually would mar,,trnze
information transmission per unit time. Nonetheless, it would be

interesting to know whether predictions based on a random and

independent choice of words do hold for the reading of actual

English text.
Benoit Mandelbrot, a mathematician much interested in lin-

guistic problens, has considered this matter in connection with

ieading-time data taken by D. H. Howes , afr experimental psy-
chologist. R.R. Riesz, an experienced experimenter in the field of

psychophysics, and I have also attempted to compare equation
L2.4 with human behavior.

There is a difficulty in making such a comparison. It seems
fairly clear that reading speed is limited by word recognition, not

by wo rd utterance. A man may be uttering a long familiar word

while he is recognizing a short, unfamiliar word. To get around
this difficulty it ieemed best to do some averagirg by measuring
the total time of utterance for three successive words and then
comparing this with the sum of the times for the words computed
by means of 12.4.

Riesz ingeniously and effectively did this and obtained the data

of Figure XII-5. In the test, a subject read a paragraph as fast as

possible. Certainly, a straight line according to 12.4 fits the data

is well as any curve would. But the points are too scattered to prove

that 12.4 really holds.
Moreover, we should expect such a scatter, for the rank r corre-

sponds to commonness of occurrence in prose from a variety of

sburces, but we have used it as indicating the subject's experience
with and familiarity with the word. Also, as we see from Figure

XII-3, word length may be expected to have some effect on reading

time. Finally, we have disregarded relations among successive
words.

This sort of experiment is extremely exasperating. One can see

other experiments which he might do, but they would be time

consuming, and there seems little chance that they would establish
anything of general significance in a clear-cut way. Perhaps a

genius *itt unravel the situation some day, but the wary psycholo-

[ist is more apt to seek a field in which his work proniises a

definite, unequivocal outcome.
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The foregoirg work does at least suggest that word usage may

be governed by economy of effort and that economy of effort may

be measured as economy of time. We still wonder, however,
whether this is the outcome of a trained ability to cope with the

English language or whether language somehow becomes adapted

to ihe mental abilities of people. What about the number of words

we use, for instance?
People sometimes measure the vocabulary of a writer by the total

number of different words in his works and the vocabulary of an

individual by the number of different words he understands. How-
ever, rare and unusual words make up a small fraction of spoken
or written English. What about the words that constitute most of
language? How numerous ate these?

One might assert that the number of words used should reflect

the complexity of life and that we would need more in Manhattan
than in Thule (before the Air Force, of course). But, we always
have the choice of using either different words or combinations of
common words to designate particular things. Thus, I can say
either "the blonde girl," o'the redheaded girl," "the brunette girl"

or I can say o'the girl with light hair," "the girl with red hair," "the

girl with dark hair." In the latter case, the words with, light, dark,
red, and hair serve many other purposes, while blonde, redheaded,
and brunette are speciahzed by contrast.

Thus, we could construct an artificial language with either fewer

or more common words than English has, and we could use it to

say the same things that we say in English. In fact, we can if we

wiitr regard the English alphabet of twenty six letters as a reduced
language into which we can translate any English utterance.

Perhaps, however , all languages tend to assume a basic size of

vocabulary which is dictated by the capabilities and organization
of the human brain rather than by the seeming complexity of the

environment. To this basic language, clever and adaptable people
can, of course, add as many special and infrequently used words

as they desire to or can remember.
Zipfhas studied just this matter by means of the graphs illustrat-

ing his law. Figure XII-6 1 shows frequency (number of times a

1 Reproduced from George Kingsle y Zipf , Human Behavior and the Principle of

Least h6ort, Addison-Wesley Publishing Compan), Reading, Mass., 1949-
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word is used) plotted against rank (order of commonness) for
260,430 runnitg words of James Joyce's Ulysses (curve A) and for
43,989 running words from newspapers (curve B). The straight line
C illustrates Zipf 's ideahzed curve or 'olaw."

Clearly, the heights of ,4 and B are determined merely by the
number of words in the sample; the slope of the curve and its
constancy with length of sample are the important things. The
steps at the lower right of the curves, of course, reflect the fact that
infrequent words can occur once, twice, thrice, and so on in the
sample but not 1.5 or 2.67 times.

When we ide aLtze such curves to a 45" line, as in curve C we
note that more is involved than the mere slope of the line. We start
our frequency measurement with words which occur only once;
that is, the lower right hand corner of the graph represents a fre-

I

\

\

\

\^

\

\

\ N\
l\ I



244 Symbols, Signals and Noise

quency of occurrence of l. Similarly, th. rank scale starts with l,

ttt. rank assigned to the most frequently used word. Thus, vertical

and horizonial scales start as l, and equal distances along them

were chosen in the first place to represent equal increases in

number. We see that the 45' Zipf-Iaw line tells us that the number

of different words in the sample must equal the number of occurrences

of the most frequentlY used word.
We can go further and say that If Zipt's law holds in this strict

and primitive form, a number of words equal to the square rooJ

of the number of ffirent words in the passage will make up half

of all the words in itre sample. In Figure XII-7 the number N of

different words and the number V of words constituting half the

passage are plotted against the number L of words in the passage.
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Here is vocabulary limitation with a vengeance. In the Joyce
passage, about 170 words constitute half the text. And Figure
XII-6 assures us that the same thing holds for newspaper wrilngl

Zipf gives curves which indicate that his law troiAs well for
Gothic, if one counts as a word anything spaced as a word. It holds
fairly well for Yiddish and for a numb-er of Old German and
Middle High German authors, though some irregularities occur
at the upper left part of the curve. Curves for Noiwegian tend to
be steeper at the lower right than at the upper left, anO ptains Cree
gives a line_having only about three-fourili the slope oi the Zipf 's
law line. This means a greater number of differbnt words in a
given length of text -a larger vocabulary. Chinese characters glve
a curve which zooms up at the left, indicating a smaller vocabulary.

Nonetheless, the remarkable thing is the iimilarity exhibited by
{l languages. The implication is thit the variety utrO probability
distribution of words is pretty much the same foi maoy, if not ali,
written languages. Perhaps languages do necessaril y iaupt them-
selves to a pattern dictated by the human mentat aLititiei, by the
structure and organization of the human brain. Perhaps everyone
notices and speaks about roughly the same number of featurLs in
his environment. An Eskimo in the bleak land of the north man-
ages this by distinguishitg by word and in thought among many
types of snow; an Arab in the desert has a host of words concern-
itg camels and their equipage. And perhaps all of these languages
adapt themselves in such away as to minimae the effort involved
in human communication. Of course, we don't really know whether
or not these things are so.

Zipf's data have been criticized. I find it impossible to believe
that the number of different words is entirely 

^Oictated 
by length

of sample, regardless of author. Certainly the fr.q.r.ncy wiitr *trictt
the occurs cannot change with the lengih of sample, as Zipf's law
in its simple form implies. It is said that Zipf's liw holds best for
sample sizes of around 120,000 words, that for smaller samples one
finds too many words that occur only once, and that for larger
samples too few words occur only once. It seems most reasonable
to assume that only the multiple authorship gave the newspaper
the same vocabulary as Joyce.

So far, our approach to Zipf's law has been that of takirg it as

,Xtn,.

ffi
;+ 5e*ptt

le"3a h
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an approximate description of experimental ciata and asking where

this leads us. There is another approach to Zrpf 's law. One can

attempt to show that it must be so on the basis of simple assump-

tions concerning the generation text. While various workers have

given proposed derivations, showing that Zrpf 's law follows from

certain assumptions, Benoit Mandelbrot, a mathematician who was

mentioned earlier, did the first satisfactory work and appears to

have carried such work furthest.
Mandelbrot gives two derivations. In the first, he assumes that

text is produced as a sequence of letters and spaces chosen ran-

domly but with unequal probabilities, as in the first-order approxi-

mation to English text of Chapter III. This allows an infinite

number of different "words" composed of sequences of letters

separated from other sequences by spaces.

On the basis of this assumption only, Mandelbrot shows that

the probability of occurrence of the rth of these "words" in order

of commonness must be given bY

p ( r )  -  P( r  +  V) - "

The constants B and V can be computed if the probabilities of the

various letters and of the space are known. B must be greater than

1. P must be such as to make the sum of p(r) over all'owords" equal
to unity.

We see that if V were very small and B were very nearly equal

to I, I2.5 would be practically the same as Zipf's original law.

Instead of the straight, 45" line of Figure XII-6, equation 12.5

gives a curve which is less steep at the upper left and steepet at

ihe lower right. Such a curve fits data on much actual text better
than Zipf's original law does.

It hai been asserted, however, that the lengths of the 'owords"

produced by the random process described don't correspond to

the length of words as found in typical English text.
Furtler, language certainly has nonrandom featurgs. Words get

shortened as theiiusage becomes more common. Thus, taxi and

cab came from taxicab, and cab in turn came from cabriolet. Can
we say that the fact that the random production of letters leads to

the pioduction of "words" which obey Zipf's law explains Zipf's

law? It seems to me that we can assert this only if we can show how

the forces which do shape language imitate this random process.

( l2.s )
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In his second derivation of a modified form of Zipf's law as a
consequence of certain initial assumptions, Mandelbrot assumes
that word frequencies are such as to maxim ize the information for
a given cost. As a simple case, he assumes that each letter has a
particular cost and that the cost of each word (that is, of each
sequence of letters ending in a space) is the sum of the costs of its
letters. This leads him to the same expression as the other deriva-
tion, that is, to equation 12.5. The interpretation of the different
symbols is different, however. The constant B can be less than
unity if the total number of allowable words is finite.

Regardless of the meaning of the constants, P, V, and B in
expression 12.5, we can, if we wish, merely give them such values
as will make the curve defined by 12.5 best fit statistical data
derived from actual text. Certainly, we can fit actual data better
his way than we can if we assume that V - 0 and B - I (corre-
sponditg to Zipf 's original law). In fact, by so choosing the values
of P, V u19 B, equation 12.5 can be made to fit available datavery
well in all but a few exception cases. In the cases of modern
Hebrew of around 1930 and Pennsylvania Dutch, which is a
mixture of languages, a value of B smaller than I gives the best fit.

According to Mandelbrot, the wealth of vocabulary is measured

i 
.hiefly by the value of B; if B is much greater than l, &few words

i 
ul. used over and over again; if B is nearer to l, & greater variety

I of words is used. Mandelbrot observes that as a child grows, B
I t

I d.creases from values around 1.6 to values around I . 15 or to a
I uulue around I if the child happens to be James Joyce.

I Certainly, equation 12.5 fits data better than Zrpf's original law
I does. It overcomes the objection that, accordirg to Zipf '; originalt -

I t1*, the probability of the word the should depend on the length
I of the sample of text. This does not mean, however, that Mandel-

I btot's explanation or derivation of equation 12.5 is necessarily
I torrect. Further, it is possible that some other mathematical
| *^pression would fit data concerning actual text even better. A

I 
much. more thorough study would be necess ary to settle such

I q,resttons.

I Zipf 's law holds for many other data than those conceroirg

I *ord usage. For instance, in most countries it holds for population

I :f cities plotted against rank in size. Thus, the tenth largest city

I has about a tenth the population of the largest city, utrl so on.
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However, the fact that the law holds in different cases may be

fortuitous. The inverse-square law holds for gravitational attraction

and also for intensity of light at different distances from the sun,

yet these two instnnces of the law cannot be derived from any

bo-*on theory' Act'r *fl4'-fLr*y c6n'

It is clear that our ability to receive and handle information is

influenced by inherent limitations of the human nervous syste_m.

George A. Miller's law of 7 plus-or-minus 2 is an example. This

states that after a short period of observation, a person can remem-

ber and repeat the names of from 5 to 9 simple, familiar objects,

such as bin ary or decimal digits, letters, or familiar words.

By means of a tachistoscope, a brightly illuminated picture can

be shown to a human subject for a very short time. If he is shown

a number of black beans, he can give the number correctly up to

perhaps as many as 9 beans. Thus, one flash can convey a number

b tnto"gh 9, or l0 possibilities in all. The information conveyed

is log 10, or 3.3 bits.
If ihe subject is shown a sequence of bin ary digits, he can recall

correctly perhaps as many as 7, so that 7 bits of information are

conveyed.
If the subject is shown letters, he can remember perhaps 4 or 5,

so that the information is as much as 5 log 26 bits, or 23 bits.

The subject can remember perhaps 3 or 4 short, common words,

somewhaifew er thanT z.If these are chosen from the 500 most

common words, the information is 3 log 500, ot 27 bits.

As in the case of the reading rate experiments, the gain due to

greater complexity outweighs the loss due to fewer items, and the

information increases with increasing complexity.
Now, both Miller's 7 plus-or-minus-2 rule and the reading ra_te

experiments have embarrassing implications. If a man gets only 27

bits of information from a piclure, can we transmit by means of

27 brts of information a picture which, when flashed on a screen'

will satisfactorily imitate any picture? If a man can transmit only

about 40 bits of information per second, &S the reading rate experi-

ments indicate, can we transmit TV or voice of satisfactory quality

using only 40 bits per second?
In each case t Uelieve the answer to be no. What is wrong? What

is wrong is that we have measured what gets out of the human
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being, not what goes in. Perhaps a human being can in some sense
only notice 40 bits a second worth of information, but he has a
choice as to what he notices. He might, for instance, notice the girl
or he might notice the dress. Perhaps he notices more, but it gets
away from him before he can describe it.

Two psychologists, E. Averback and G. Sperling, studied this
problem in similar manners. Each projected a large number (16
or 18) of letters tachistoscopically. A fraction of a second later
they gave the subject a signal by means of a pointer or tone which
indicated which of the letters he should report. If he could unfail-
ingly report any indicated letter, all the letters must have "gotten
in," since the letter which was indicated was chosen randomly.

The results of these experiments seem to show that far more than
7 plus-or-minus-2 items are seen and stored briefly in the organisffi,
for a few tenths of a second. It appears that 7 plus-or-minus-2 of
these items can be transferred to a more permanent memory at a
rate of about one item each hundredth of a second, or less than a
tenth of a second for all items. This other memory can retain the
transferred items for several seconds. It appears that it is the size
limitation of this longer-term memory which gives us the 7 plus-
or-minus-2 figure of Miller.

Human behavior and human thought are fascinating, and one
could go on and on in seeking relations between information theory
and psychology. I have discussed only a few selected aspects of a
broad field. One can still ask, however, is information theory really
highly important in psychology, or does it merely give us another
way of organizins data that might as well have been handled in
some other manner? I myself think that information theory has
provided psychologists with a new and important picture of the
process of communication and with a new and important measure
of the complexity of a task. It has also been important in stirring
psychologists up, in making them re-evaluate old data and seek
new data. It seems to ffie, however, that while information theory
provides a central, universal structure and organrzatton for elec-
trical communication, it constitutes only an attractive area in
psychology. It also adds a few new and sparklirg expressions to
the vocabulary of workers in other areas.



CHAPTER XIII Information
Theory) and Art

Soun yEARs AGo when a competent modern comPoser and

professor of music visited the Bell Laboratories, he was full of the

r.*r that musical sounds and, in fact, whole musical compositions

can be reduced to a series of numbers. This was of course old stuff

to us. By using pulse code modulation, one can represent any

electric or u.o.6tic *aue form by means of a sequence of sample

amplitudes.
We had considered something that the composer didn't appreci-

ate. In order to represent fairly high-quality music, with a band

width of 15,000 cycles per second, one must use 30,000 samples

per second, and each one of these must be specified to an accuracy

bf p.thaps one part in a thousand. We can do this by using three

decimat bigits (or about ten binary digits) to designate the ampli-

tude of each sample.
A composer could exercise complete freedom of choice among

sounds simply by specifyirg a sequence of 30,000 three-digit deci-

mal numbers a second. This would allow him to choose from

among a number of twenty-minute compositions which can be

written as I followed by 108 million O's-an inconceivably large

number. Putting it another way, the choice he could exercise in

composing would be 300,000 bits per second.

Here *. r.rse what is wrong. We have noted that by the fastest

demonstrated means, that is, by reading lists of words as rapidly

as possible, a human being demonstrates an information rate of

250
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no more than 40 bits per second. This is scarcely more than a ten-
thousandth of the rate we have allowed our composer.

Further, it may be that a human being can make use of, can
appre crate, information only at some rate even less than 40 bits
per second. When we listen to an actor, we hear highly redundant
English uttered at a rather moderate speed.

The flexibility and freedom that a composer has in expressing a
composition as a sequence of sample amplitudes is largely wasted.
They allow him to produce a host of 'ocompositions" which to any
human auditor will sound indistinguishable and uninteresting.
Mathematically, white Gaussian noise, which contains all frequen-
cies equally, is the epitome of the various and unexpected. It is
the least predictable, the most original of sounds. To a human
being, however, all white Gaussian noise sounds alike. Its subtleties
are hidden from him, and he says that it is dull and monotonous.

If a human being finds monotonous that which is mathematically
most various and unpredictable, what does he find fresh and
interesting? To be able to call a thing new, he must be able to
distinguish it from that which is old. To be distinguishable, sounds
must be to a degree familiar.

We can tell our friends apart, we can appreciate their particular
individual qualities, but we find much less that is distinctive in
.strangers. We can, of course, tell a Chinese from our Caucasian
friends, but this does not enable us to enjoy variety among Chinese.
To do that we have to learn to know and distinguish among many
Chinese. In the same way, we can distinguish Gaussian noise from
Romantic music, but this gives us little scope for variety, because
all Gaussian noise sounds alike to us.

Indeed, to many who love and distinguish among Romantic
composers, most eighteenth-century music sounds pretty much
alike. And to them Grieg's Hotberg Suite may sound like eight-
eenth-century music, which it resembles only superficially. Even
to those familiar with eighteenth-century music, the choral music
of the sixteenth century may seem monotonous and undistinguish-
able. I know, too, that this works in reverse order, for some
partisans of Mozart find Verdi monotonous, and to those for whom
Verdi affords tremendous variety much modern music sounds like
undistinguishable noise.

Of course a composer wants to be free and original, but he also
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wants to be known and appreciated. If his audience can't tell one
of his compositions from another, they certaitly won't buy record-
ings of many different compositions. If they can't tell his composi-
tions from those of a whole school of composers, they may be
satisfied to let one recorditg stand for the lot.

How, then, can a composer make his compositions distinctive
to an audience? Only by keeping their entropy, their information
rate, their variety within the bounds of human ability to make
distinctions. Orly when he doles his variety out at a tate of a very
few bits per second can he expect an audience to recogntze and
appreciate it.

Does this mean that the calculating composer, the information-
theoretic composer so to speak, will produce a simple and slow
succession of randomly chosen notes? Of course not, not any more
than a writer produces a random sequence of letters. Rather, the
composer will make up his composition of larger units which are
already familiar in some degree to listeners through the training
they have received in listening to other compositions. These units
will be ordered so that, to a degr ee, a listener expects what comes
next and isn't continually thrown off the track. Perhaps the com-
poser will surprise the listener a bit from time to time, but he
won't try to do this continually. To a degree, too, the composer
will introduce entirely new material sparingly. He will familianze
the listener with this new material and then repeat the material in
somewh at altered forms.

To use the analogy of language, the composer will write in a
langu agewhich the listener knows. He will produce a well-ordered
sequence of musical words in a musically grammatical order. The

words may be rec ognLzable chords, scales, themes, or ornaments.
They will succeed one another in the equivalents of sentences or

stanzas, usually with a good deal of repetition. They will be uttered
by he familiar voices of the orchestra. If he is a good composer,
he will in some way convey a distinct and personal impression to

the skilled listener. If he is at least a skillful composer, his composi-
tion will be intelligible and agreeable.

Of course, none of this is new. Those quite unfamiliar with

information theory could have said it, and they have said it in other
words. It does seem to me, however, that these facts are particu-
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larly pertinent to a duy in which composers, and other artists as
well, are faced with a multitude of technical resources which are
temptirg, exasperating, and a little frightening.

Their first temptation is certainly to choose too freely and too
widely. M. V. Mathews of the Bell Laboratories was intrigued by
the fact that an electronic computer can create any desired wave
form in response to a sequence of commands punched into cards.
He devised a program such that he could specify one note by each
card as to wave form, duratior, pitch, and loudness. Delighted
with the freedom this afforded him, he had the computer reproduce
rapid rhythmic passages of almost unplayable combinations, such
as three notes against four with unusu al patterns of accent. These
ingenious exercises sounded, simply, chaotic.

Very skillful composers, such as Vardse, can evoke an impression
of form and sense by patching together all sorts of recorded and
modified sounds after the fashion of musique concrite. Many
appealing compositions utilizing electronically generated sounds
have already been produced. Still, the composer is faced with
difficulties when he abandons traditional resources.

The composer can choose to make his compositions much
simpler than he would if he were writing more conventionally, in
ordef not to lose his audience. Or he and others can try to educate
an audience to remember and distinguish among the new resources
of which they avail themselves. Or the composer can choose to
remain unintelligible and await vindication from posterity. Perhaps
there are other alternatives ; cefiainly there are if the composer has
real genius.

Does information theory have anything concrete to offer con-
cerning the arts? I think that it has very little of serious value to
offer except a point of view, but I believe that the point of view
may be worth explorirg in the brief remainder of this chapter.

In Chapters III, VI, and XII we considered language. Language
consists of an alphabet or vocabulary of words and of grammatical
rules or constraints concerning the use of words in grammatical
text. We learned to distinguish between the features of text which
are dictated by the vocabulary and the rules of grammar and the
actual choice exercised by the writer or speaker. It is only this
element of choice which contributes to the average amount of
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rnformation per word. We saw that Shannon has estimated this to
be between 3.3 and 7.2 bits per word. It must also be this choice
which enables a writer or speaker to convey meaning, whatever
that may be.

The vocabulary of a language is large, although we have seen
in Chapter XII that a comparatlely few words make up the bulk
of any text. The rules of grammar are so complicated that they
have not been completely formulated. Nonetheless, most peopl-e
have a latge vocabulary, and they know the rules of gra--ui irt
the sense that they can recognize and write grammatiial English.

It is reasonable to assume a similarly surprisingly large kriowl-
edge of musical elements and of relations among tfrb* on the part
of the person who listens to music frequentli attentively, and
appreciatively. Of course, it is not necess ary that the listener be
able to formulate his knowledge for him to have it, any more than
the writer of grammatical English need be able to formulate the
rules of English grammar. He need not even be able to write
music accorditg to the rules, any more than a mute who under-
stands speech can speak. He can still in some sens e know the rules
and make use of his knowledge in listening to music.

Such a knowledge of the elements andlules of the music of a
particular nation, era, or school is what I have referred to as'oknowitg the language of music" or of a style of music. However
much the rules of music may or may not be based on physical laws,
a knowledge of a language of music must be acquired by years of
practice, just as the knowledge of a spoken language is. li is only
by means of such a knowledge that we can diitinguish the style
and ihdividuality of a composition, whether lite riry or musiCal.
To the untutored ear, the sounds of music will seem to be examples
chosen not from a restricted class of learned sounds but from all
the infinity of possible sounds. To the untutored ear, the mechani-
cal rvorkings of the rules of music will seem to represent choice
and variety. Thus, the apparent complexity of niusic will over-
whelm the untutored auditor or the auditor familiar only with
some other language of music.

We should note that we can write sense while violating the rules
of grammar to a degree (me heap big injun). We mighiliken the
intelligibility of this sentence to an English-speaking prtton to our
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ability to appreciate music which is somewhat strange but not
entirely foreign to our experience. We should also note that we can
write nonsense while obeying the rules of grammar carefully (the
alabaster word spoke silently to the purple). It is to this second
possibility to which I wish to address myself in a moment. I will
remark first, however, that while one can of course both write
sense and obey the rules while doing so, he often exposes his
inadequacies to the public gaze by thus being intelligible.

It is no news that we can dispense with sense almost entirely
while retaining a conventional vocabulary and some or many rules.
Thus, Mozart provided posterity with a collection of assort€d,
numbered bars in Ta time, together with a set of rules (Koechel
294D). By throwirg dice to obtain a sequence of random numbers
and choosing successive bars by means of the rules, even the
nonmusical amateur can "compose" an almost endless number of
little waltzes which sound like somewhat disorganized Mozart. An
example is shown in Figure XIII-I. Joseph Haydn, Maximilian
Stadler, and Karl Philipp Emanuel Bach are said to have produced
similar random music. In more recent times, John Cage has used
random processes in the choice of sequences of notes.

In ignorance of these illustrious predecessors, in 1949 M. E.
Shannon (Claude Shannon's wife) and I undertook the composi-
tion of some very primitive statistical or stochastic music. First we
made a catalog of allowed chords on roots I-VI in the k.y of C.
Actually, the catalog covered only root I chords; the others were

f o f  
- a.t

Fig. XIII-I
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derived from these by rules. By throwirg three specially made dice
and by using a table of random numbers, a number of ro*posi-
tions were produced.

In these compositions, the only rule of chord connection was
that two succeeding chords have a common tone in the same voice.
This let the other voices jt*p around in a wild and rather unsatis-
factory manner. It would correspond to the use of a simple and
consistent but incorrect digram probability in the construition of
synthetic text, as illustrated in chapter III.

While the short-range structure of these compositions was very
primitive, an effort was made to give them a plausible and reason-
ably memorable, longer-range structure. Thus, each composition
consisted of eight measures of four quarter notes each. The long-
range structure was attained by making measures 5 and 6 repeit
measures I and 2, while measures 3 and 4 differed from measures
7 and 8. Thus, the compositions were primitive rondos. Further,
it was specified that chords l, 16, and 32 have root I and chords
15 and 3l have either root IV or root Y in order to give the effect
of a cadence.

- Although the compositions are formally rondos, they resemble
hymns. I have reproduced one as Figure XIII-2. As all hymns
should have titles and words, I have provided these by nonrandom
means. The other compositions sound much like tire one given.
Clearly, they are all by the same composer. Still, after a few hear-
ings they can be recognized as different. I have even managed to
grow fond of them through hearing them too often. They must
grate on the ears of an uncorrupted musician.

In 195 1, David Slepian, an information theorist of whom we
have heard before, took another tack. Following some early work
by Shannon, he evoked such statistical knowledge of music as luy
latent in the breasts of musically untrained *uthematicians who
were near at hand. He showed such a subject a quarter bar, a half
bar, or three half bars of a "composition" and isked the subject
to add a sensible succeeding half bar. He then showed utroihet
subject an equal portion includirg that added half bar and got
another half bar, and so on. He told the subjects the intended styles
of the compositions.
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Fig. XIII-2

In Figure XIII-3, I show two samples: a fragment of a chorale
in which each half bar was added on the basis of the preceding
half bar and a fragrnent of a "romantic composition," in which
each half bar was added on the basis of the precedirg three half
bars. It seems to me surprising that these "compositions" hang
together as well as they do, despite the inappropriate and inadmis-
sible chords and chord sequences which appear. The distinctness
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Fig. XIII-3

of the styles is also arresting; apparently the mathematicians had
quite different ideas of what was appropriate in a chorale and
what was appropriate in a romantic Composition.

- Slepian'-s experiment shows the remutkable flexibility of the
human being as well as some of his fallibility. Tiue siochastic
processes are apt to be more consistent but duller. A number have
been used in the composition of music.

There is no doubt that a computer supplied with adequate
statistics describing the style of a compor.r .orld produce ,ur-do*
music with a recognrzable similarity to a.o*poser's style. The
nursery-tune 

-style demonstrated by Pinkerton anO the div-ersity of
st-yles evoked by Hiller and Isaacior, which I will describr pr.r-
ently, illustrate this possibility.

In 1956, Richard C. Pinkerton published in the Scienttfc Ameri-
can some simple schemes for writing tunes. He showed how a note
could be chosen on the basis of iti probability of following the
particular preceditg note and how the probabiiities changeO-witfr
respect to the position of the note in the bar. Using probabilities
derived from nursery tunes, he computed the ent;by per note,
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which he found to be 2.8 bits. I feel sure that this is quite a bit too
high, because only digram probabilities were considered. He also
presented a simple finite-state machine which could be used to
generate banal tunes, much as the machine of Figure III- 1 gener-
ates o'sentences."

In 1957, F. B. Brooks, Jr., A. L. Hopkins, Jr., P. G. NeumaruI,
and W. V. Wright published an account of the statistical composi-
tion of music on the basis of an extensive statistical study of
hymn tunes.

In 1956, the Burroughs Corporation announced that they had
used a computer to generate music, and, in 1957 , it was announced
that Dr. Martin Klein and Dr. Douglas Bolitho had used the
Datatron computer t<l write o'popular" melodies. Jack Owens set
words to one, and it was played over the ABC network as Push
Button Bertha. No doubt many others have done similar things.

It remained, however, for L. A. Hiller, Jr., and L. M. Isaacson of
the tlniversity of Illinois to make a really serious experiment with
computer music. Hiller and Isaacson succeeded in formulating the
rules of fourpafi, first-species counterpoint in such a way that a
computer could choose notes randomly and reject them if they
violated the rules.

Because the rules involve, except in connection with the con-
cluding cadence, only direct relations among three successive notes,
the music tends to wander, but over a short range it sounds
surprisingly good. A sample is shown in Figure XIII-4.1

Hiller and Isaacson went on to demonstrate that they could use
the computer to generate interestihg rhythmic and dynamic pat-
terns and to generate "Markoff-chain" music, in which successive
note selection depended on probability functions computed from
tables derived from various considerations of overtones or har-
monics. In this case they generated a coda accordirg to a simple
prescription.

As it stands, this music, which was brought together and pub-
lished as the llliac Suitefor String Quartet, has a good deal of local
structure but is weak and wandering as a whole. The imposition

r Reproduced from L. A. Hil ler, Jr., and L.

Quartet, New Music, 1957, by permission of
Mawr, Pa.

M. Isaacson, Illiac Suite for String
Theodore Presser Company, Bryn
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of some simple pattern or repetition might have helped consider-
ably. This could be of a strictly deterministic nature,L, in the case
of the prescribed repetitions in a rondo, or it could be of the nature
of Chomsky's grammar, which we have considered in Chapter VI.
It is clear, however, that it is foolish to try to attatn long-range
structure 

li*ply by relating a note to the immediately prJcediig
notes by digram, trigram, and higher probabilities. Th; relation
must be among parts of the composition, not simply among notes.

The work of Hiller and Isaacson does demonstrate conciusively
that a computer can take over many musical chores which only
human beings had been able to db before. A composer, and
especially an unskilled composer, might very well rely on a com-
puter for much routine musical drudgery. The composer could
merely guide the main pattern of th; rb-position and let the
computer fill in details of harmony and co.rnterpoint, according
to a specification of style or period. Further, the computer couli
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be used to try out proposed new rules of composition, such as new
rules of counterpoint or harmotry, with whose use and conse-
quences the composer might have little experience and familiarity.

In these days we hear that cybernetics will soon give us machines
which learn. If they learn in a complicated enough sense of the
word, why couldn't they learn what we like, even when we don't
know ourselves? Thus, by rewarding or punishing a computer for
the success or failure of its efforts, we might so condition the com-
puter that when we pressed a button marked Spanish, classical,
rock-and-ro11, sweet, etc., it would produce just what we wanted
in connection with the terms. Such thoughts are intriguing, but
they are of course nonsense in our duy and will probably remain
so for a long time to come.

Music is not all of art. I began with music because it offers an
apt means for illustrating in an unusual context some ideas derived
from information theory. We could just as well draw our illustra-
tions from the use of lan guage. Indeed, experiments with the
stochastic production of text have been perhaps more widely
cultivated than experiments with music.

A professor at the Grand Academy of Lagoda showed Captain
Lemuel Gulliver a word frame consisting of lettered blocks
mounted on shafts. The professor turned these at random and
sought new wisdom in the patterns of letters which appeared.

Here we see just the wrong application of a stochastic process
in the generation of text. Certainly, this will not give us new
knowledge. Who would take the uncorroborated word of a random
process? There are all too many unsubstantiated statements avail-
able; what we need to know is what is so and what isn't.

Nonetheless, a stochastic process can produce some interesting
effects. In Chapter III we noted Shannon's approximations to
English text. These were made by using letter digram and trigram
frequencies and a table of random numbers. We have seen that they
contain some interesting "words."

To me, deamy has a pleasant sound; I would take ooit's a deamy
idea" in a complimentary sense. On the other hand, I'd hate to be
denounced as ilonesive. I would not like to be called grocid; per-
haps it reminds me of gross, groceries, and gravid. Pondenome,
whatever it may be, is at least dignified.
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I repeat Shannon's second-order word approximation here:
The head and in fron tal attack on an English writer that the character

of this point is therefore another method foi the letters that the time who
ever told the problem for an unexpected.

I find ttit disquieting. I feel that the English writer is in mortal
peril' yet I cannot come to his aid because the latter part of the
rhessage is garbled.

In seekitg less garbled material, as I noted in Chapter VI, I wrote
three grammatically connected words in a colu*r from the top
down on a slip of p"aper. I showed them to a friend, asked him to
make up a sentence in which they occurred, and then to add the
next word in this sentence. I then folded over the top word of the
four I now had and showed the visible three to another friend and
got another word from him. After canvassing twenty friends, I had
the following:

When morning broke after an orgy of wild abandon he said her head
shook vertically aligned in a sequence of words signifying wh at . . .

Later examples are:

One duy when I went to what was Dionysus thinking of women without
men go off half way decent impression . . .

I forget whether he went on and on. Finally he stipulated that this must
stop immediately after this. The last time I saw him when she lived.
It happened one frosty look of trees waving gracefully against the wall.
You never can . . .

We see that a seeming order of meaning persists over groups of
far more than four words. Eventually, however, the text wanders.
The long-range wandering is of course attributable to the fact that
there is no long-rltge, persistent purpose or meaning guiding the
choice of words. We sometimes see.a similar quality"in the ,ittrr-
ances of schizophrenics. 'VV. 

H. Hudson illustrates a more gradual
wandgring admirably by u character in his The Purple Land; Uncle
Anselmo never gets to the end of a story because he continually
wanders on to new ground.

One can add a certain amount of long-range order by writing,
in view, at the bottom of the slip of paper to which people adi
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words a title which indicates what the passage is supposed to
be about.

Dr. Donald A. Dunn of the Stanford Electronics Laboratory has
kindly supplied me with some examples in which the person
adding a word saw only one precedirg word, together with the title:

Men and Women

Eve loved intensely sentimental or not sufficient tonight wherever you
may die before yesterday again and whatever m'love misbehaves.

The seduced are compatible unusual family life seemed wonderful
experience for tenderness forever yours.

Orphans frequently visited his promiscuity and infidelity despite hate
and love for tomorrow sex ain't nothirg.

In the followirg examples, which were produced at the Bell
Laboratories, the person adding a word saw three precedirg words
as well as the title:

About Life

Life has many good and wise men seldom condemn halfwits lightly! You
wonder why not. Human feelings but savage tribes found . . .

Engineers

It is frequently said that they knew why forces might affect salaries.
However, all scientists can't imagine . .

Housecleaning

First empty the furniture of the master bedroom and bath. Toilets are
to be washed after polishing doorknobs the rest of the room. Washing
windows semiannually is to be taken by small aids such as husbands are
prone to omit soap powder.

Murder Story

When I kil led her I stabbed Claude between his powerful jaws clamped
tightly together. Screaming loudly despite fatal consequences in the
struggle for life ebbing as he coughed hollowly spitting blood from his ears.

I think that it is hard to read such material without amusement.
I feel a little admiration as well. I would never write, "It happened
one frosty look of trees waving gracefully against the wall." I
almost wish I could. Poor poets endlessly rhyme love with dove,
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and they are constrained by their highly
to produce a good line. In some sense, fl
better ; it at least has a chance. I wish t
never would have.

trained mediocrity never
stochastic process can do
had hit on deamy, but I

Will a compuJer produce text of any literary merit by means of
grammatical rules and a sequence of random numb.trt It might
produce fresh and amusing z'words" and amusing short passages
of some shock value. One can of course imaline a machine
designed to write detective novels and equippeO ivith settings for
hard-boiled, puzzle, char acter, suspense, u"o so or, but such a
device seems to me to be very far away.

The visual arts can be used to illusirate the same points which
have been made in connection with music and language. A com-
pletely random visual pattern, like a completely tuidom acoustic
wave or a compl:tely random sequence of letters, is mathematically
the most surprit_t.g, tl. least piedictable of all possible patt.t"i.
Alas, a completely random patfern is also the dullest of all patterns,
and to a human 

-b.ti"g one random pattern looks just like^another.
Figure XIII-5, which is an array of i0,000 randornly black or white
dots, illustrates this.

Bela Julesz, who works in the field of perception, caused an

Fig.XnI-s
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electronic computer to produce this random array of dots as a part
of his studies of stereoscopic vision and of the meaning of pattern.
He also programmed the computer to remove some of the random-
ness from such a random pattern. He did this by making the
computer examine successively various sets of five points located
at the tips and at the center of an X, as shown by the points marked
X rn Figure XIII-6 (other points are marked O). If the center point
was the same (black or white) as either points I and 4 or points
2 and 3, it was changed (from black to white or from white to
black). This tends to remove any black or white diagonals, except
when points I and 4 are black and points 2 and 3 are white or
vice versa.

As we can see from Figure XIII-7, making a pattern less random
in this way alters and improves its appearance profoundly. An
unpredictable (random) rontponent iJ besirable ior the ruk. of
variety or surprise, but some orderliness is necessary if a pattern
is to be pleasing.

This exploitation of both order and randomness is in fact old
to art. The kaleidoscope offers a charmirg effect by giving to a
random arrangement of bits of colored glass a sixfold symmetry.

o
Fig. XIII-6
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Fig. XIII-7

M?ty years ago Marcel Duchamp, who painte d Nude Descending
a Staircnse, allowed a number of threads to fall on pieces of black
cloth and then framed and preserved them. Jean- Tinguley, the
Swiss artist, has produced, by means of a machine, partly ordered,
partly random colored designs of considerable meriti I derive
continuing pleasure from one which hangs in my office. I saved
for years a pile of solder droppings which I intended to mount on
a block of ebony and present to the Museum of Modern Art.
Finally, I lost both the solder and the desire to do so.

All of this has given me a sort of minimum philosophy of art,
which I will not, I hasten to assure the reader, 6lame on informa-
tion theory. It is a minimum philosophy because it says nothing
about the ialent or genius whiifr aloni iur make art worth while.

Successful art requires the appreciation of an audience as well
as the talent of the artist. Audiences are influenced by things other
than the object of art before them. If a person sets his mind against
it,.anything will leave him cold. A desire to appreciate can, on the
other hand, lead to one's liking even poor works. I like the hynn-
like compositions that Betty Shannon and I made. Authors some-
times prefer inferior works of their own. Both small coteries and
large groups can be led to appreciate sincerely things which are for
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a time the fashion but which have little long-range appeal and
which probably have little merit.

Among other things, audiences want to have a sense of author-
ship, a sense of an individual, in connection with works of art. To
bring appreciation to an artist, his work must have enough con-
sistency so that it is recognrzable as his. How let down the sincere
appreciator must be if he always has to look at the label or wait
for the announcer in order to know that the painting or music is
the product of his favorite artist.

Suppose that one artist had actually produced in succession the
masterpieces we now accept as the works of a number of great
artists with diverse styles, long before the artists lived. This would
astonish uS, but we could scarcely appreciate him as an artist,
however much we might admire the individual paintings. Picasso
is eminently recogntzable, but he is disquieting. He has been skillful
in many styles, and yet he escapes our final judgment by going from
one style to another. How much easier it is to appreciate Matisse.

To be appreciated by an audience, art must be intelligible to the
audience. Even a good joke in Chinese will amuse few Americans,
and certainly ten jokes in Chinese will be no more amusing than
one. To a degree, to be appreciated art must be in a language
familiar to the audience; otherwise no matter how great the variety
may be, the audience will have an impression of monotony, of
sameness. We ca-n be surprised repeatedly only by constrast with
that which is familiar, not by chaos.

Some artists adopt a language taught to their audience by earlier
masters. Brahms was one of these. Other artists teach somethirg
of a new language to their audiences, as the impressionists did.
Certainly, the language of art changes with time, and we should
be grateful to the artists who teach us new words. However, we
should not doubt the originality of such artists as Bach and Handel,
who spoke ringingly in a language of the past.

While a language with intelligible words and relations between
words is necessary in art, it is not sufficient. Mechanical sameness
is dull and disappointing. I prefer the surprises of stochastic prose
to the vapid verses of Owen Meredith. Perhaps in some age of bad
att, man will be forced to stochastic art as an alternative to the
stale product of human artisans.

So much for information theory and art.



cHAPTER XIV Back to
Communication
Theorl

SunEtY, IT IS woNDERFUL if a new idea contributes to the
solution of a broad range of problems. But, first of all, to be
worthy to notice a new idea must have some solid and clearly
demonstrated value, however naffow that value may be. 

J

An information theorist has critrcrzed me for explorirg in this
book possible applications of information theory in fieldi of lan-
guage, psychology, and art. To him, the relation between such
subjects and information theory seems marginal or even dubious.
Why distract the reader from the clearly demonstrated value and
i{portance of information theory by discussing matters concerning
which no clear value or importance can be demonstrated?

Partly, in writing this book I have felt an obligation to the reader
to discuss relations between information theory in its solid and
narrow sense and various fields with which it has been connected
in the writings of others. Partly, I believe that information theory
is useful in helping us in talkitg sense or at least in keeping from
talking nonsense in connection with some linguistic, ariistii, and
p.sychological problems. However, there is a danger in overempha-
sizing such matters in a book on information theory.

It would certainly be wrong to assert or to believe that informa-
tion theory is valuable chiefly because of wide-ranging connections

268
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with a variety of fields such as language, cybernetics, psychology,
and aft. To believe this would be to repeat mistakes which have
been made in connection with other important discoveries.

Thus, in Newton's duy his work was beclouded by controversy
and philosophy, and for many years thereafter it was associated
in people's minds with a putative universality which confused its
real nature. Einstein, however, could see more clearly. He said:
"Reaso[, of course, is weak when measured against its never
ending task." Einstein then described Newton's contribution to
this task of understanding and observed, "and with that, the goal
was reached, the science of celestial mechanics was born, confirmed
a thousand times over by Newton himself and those who came
after him."

It is fair to add that since Newton's da1l, Newtonian mechanics
has been useful in solvitg or contributing to the solution of prob-
lems that never entered the minds of Newton and his contempo-
raries, but it has not solved all problems of science, as some
optimistic philosophers expected it to.

To me the indubitably valuable content of information theory
seems clear and simple. It embraces the ideas of the information
rate or entropy of an ergodic message source, the information
capacrty of noiseless and noisy channels, and the efficient encodirg
of messages produced by the source, So as to approach errorless
transmission at a rate approaching the channel capacity. The
world of which information theory gives us an understanding of
clear and present value is that of electrical communication systems
and, especially, that of intelligently designing such systems.

It seems to me wise at the close of this book to turn away from
the broad, speculative possibilities (or impossibilities?) of informa-
tion theory and to ask the followirg question: Beyond the things
already described in this book, what have information theorists
done and what are they doing that is mathematically sound, well
founded, compelling? What, in other words, have they done that
qualifies as sound science which we must accept rather than as
intriguitg speculation that we have the privilege of arguing about?

Here we find a broad range of work. To explain all of it fully to
the reader would take another book. Thus, this chapter will be a
brief summary of some of the work of information theorists since
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the publication of Shannon's original paper. Its purpose is to
acquaint the reader with the scope of information theory in its
narrow sense and, perhaps, to entice him into followirg such
activities in greater detail.

One thing that information theorists have sought is some appli-
cation of the entropy of information rate of a message source to a
problem other than that of encoding and transmission of informa-
tion. Ambitious men want to bring meaning into the picture
somehow, but a more modest worker is willirg to settle for any
application which is meaningful and rigorously correct.

The only application of information rate to a problem other
than efficient encoding which has been given so far and which
meets these criteria was advanced by J. L. Kelly, Jr., in 1956.r It
concerns gambling on chance events in which the bettor has inside
information as to the outcome of the event bet upon. We might
imagine, for instance, that the dice are already thrown (or the race
run) and that the favored bettor knows this and has received some
knowledge of the outcome, but the person with whom he bets
doesn't know this and gives the bettor fair odds on the basis of
the chance of the outcome.

The information which the bettor receives is doled out to him
in bits, that is, yes-or-no answers to questiols. His informant
could, for instance, inform the bettor completely conceroirg
whether a coin tossed had turned up heads or tails by sending him
one bit of information. Or the informant could narrow foi the
bettor the possible outcomes of the cast of a die from 6 to 3 by
using one bit of information to tell the bettor whether the outcome
was odd or even.

Followitg this introduction, I can best explain Kelly's result by
quoting the abstract of his paper:

If the input symbols to a communication channel represent the outcomes
of a chance event on which bets are available at odds consistent with their
probabilities (i.e., "fair" odds), a gambler can use the knowledg. given him
by the received symbols to cause his money to grow exponentially. The
maximum exponential rate of growth of the gambler's capital is equal to

1 "New Interpretation of Information Rate," Bell System Technical Journal Vol.
35 (July, 1956), pp. 917-926.
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the rate of transmission of information over the channel. This result is
generalized to include the case of arbitrary odds.

Thus we find a situation in which the transmission rate is significant even
though no coding is contemplated. Previously this quantity was given
significance only by a theorem of Shannon's which asserted that, with
suitable encoding, binary digits could be transmiited over the channel at
this rate with an arbitrarily small probability of error.

Numerically the factor by which the gambler's initial capital is
increased after l/ bets is

2NR

Here R is the average number of bits of information transmitted
to the bettor per bet.

If this seems a trivial application of the amount of information
in bits, the reader should meditate on the fact that it is the only
mathematically established interpretation, other than those con-
cerned with the rate of generation of probable messages and their
efficient encoding for transmission, that anyone has discovered.

In advancing information theory, one may seek a new use for
information theory rather than a new interpretation of information
rate. Thus, in 1949, C. E. Shannon published a long paper entitled
"Communication Theory of Secrecy Systems."2 It is doubtful
whether this paper has helped substantially in the deciphering of
messages, but it has provided, for the first time, a well organized
theory of cryptography and cryptanalysis, and it is highly regarded
by the expert cryptanalysts.

It would be hopeless to try to go into the details of Shannon's
work here, but I will try to give an idea of some of its content.

The cryptanalyst who lays hands on a message enciphered by
an unknown means is ignorant of two things: the message itself
and a specification of the means used to encipher it, which we may
call the k.y.

Sometimes, the cryptanalyst may know the general scheme of
encipherment. To take a ridiculously simple example, he might
know that a simple substitution cipher had been used, that is, for
each letter of the alphabet some other letter had been substituted
according to a fixed scheme.

2 lbid., Vol. 28 (October, 1949), pp. 656-715.
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The cryptanalyst may have a short or a long enciphered message
to work with. If the message had only three letters in it, say QXD,
these might stand for AND, or BET, or any other Engliih word
made up of three different letters. As the message becomes longer,
however, the number of possible English texts which could hive
been encrypted by means of a simple substitution cipher to give the
particulai messa ge at hand decreases; if the enciphered ,i.rrug.
is long enough, there will be only one possible source message.

Shannon expressed this decrease of uncertainty as to whaf mes-
sage might have been enciphered so as to give the message in
question as a change in the equivocation. The equivocation Hr(*)
of Chapter VIII gives the uncertainty of what message was
enciphered by the general means in question in order to give the
received enciphered message. Shannon was able to compute in the
case of various ciphers how the equivocation decreases as the
number of characters in the message increases. When the equivo-
cation approaches zero, only one message could have been en-
ciphered to give the enciphered message, and, in principle, the
message can be deciphered uniquely.

What other sorts of problems have confronted or now confront
information theorists? Some of these problems concern the sampl-
ing theorem. Information theorists use the samplirg theorem in
order to represent a smoothly varying, band-limited signal by
means of a sequence of numbers; the sample numbers are the
amplitudes of the signal taken every l/zW seconds, where W rs
the band width of the signal.

The samples which represent a given band-limited signal are not
unique; they can be taken at various times. Thus, in Figure XIV-1,
either the vertical solid lines or the vertical dashed lines are samples
which legitimately represent the function, and samples could have
been taken at many other locations. In fact, the samples don't
even have to be equally spaced in tirne, provided that, on the
average, there are two 2w samples per second!

Fig. XIV-I
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A band-limited signal is represented uniquely by 2W samples
per second only when all samples from the infinite past to the
infinite future are used. Sometimes we would like to talk about a
piece of band-limited signal or about a band-limited signal which
is almost zero except for some specified range of time, and we
would like to describe such a portion of a signal or a signal of
limited duration handily in terms of samples.

Our first thought might be, can we merely specify a short signal
or a portion of a signal by specifyirg the values of a finite sequence
of samples and saying nothing about samples before or after these?
Alas, specifyitg such a finite set of samples does not specify just
one band-limited signal; many different band-limited signals can
be passed through a finite sequence of samples, and, if the signals
are very large outside of the range of the specified samples, they
can be very different within the range of the specified samples.

This failing, we might sa), let us specify certain successive
sample values and make all preceding and succeeding samples be
zero. Surely, we may think, the band-limited signal so specified
will conform closely to the sample values where these are not zero
and will be small wherever the samples are specified as zero.

Suppose, for instance, that we insist that all of a set of equally
spaced samples after a tim a to are zero, while the samples before
the time ts are nonzero, as shown by the dots in Figure XIV-2.
Because the samples are specified for all times past and future, they
do specify a unique band-limited signal. Will this signal be nearly
zero for times after ts?

Alas, H. O. Pollak, of the Bell Laboratories, has shown that this
need not be so. Suppose we ask, what part of the total energy of
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the band-limited signal passing through such samples is carried
by the part of the wave which occurs ten seconds, or twenty
minutes, or fifty years after /s? Remember all the samples are zero
after /e.

The surprising answer is that almost half of the energy of the

signal can be carried by the part that occurs later than any specified
time after the samples become zero. Thus, the signal can be zerc
at all the samples aftet to and still be large in between them.

Efforts to use the samplirg theorem rigorously to represent
signals of limited length are in mathematical trouble, and mathe-
maticians are trying to find some way out.

Work by Pollak and Slepian indicates that neither samples nor
sine waves are the most appropriate way to represent band-limited
functions of finite duration, and these mathematicians have used
a more appropriate group of functions called prolate spheroidal

functions for this purpose.
One puzzltng matter about information theory may be illustrated

by the followirg example. Suppose that in telegraphy we let a
positive pulse represent a dot and a negative pulse represent a dash.
Suppose that some practical joker reverses connections so that
when a positive pulse is transmitted a negative pulse is received
and when a negative pulse is transmitted a positive pulse is
received. Because no uncertainty has been introduced, information
theory says that the rate of transmission of information is just the
same as before. Yet we feel that some damage has been done to
the communication system. The damage would be even more
appalling if, in a teletypewriter link, we consistently printed out
W for A, K for B, and so on, in a completely scrambled fashion.

This bothered Shannor, and he has worked out a theory to
cover the situation. In this theory, he establishes a fidelity criterion.
Thus, he might assign a given penalty for substituting a consonant
for a vowel and a lesser penalty for substituting one vowel for
another. He can then assess the damage done to a message by either
consistent or random errors, When the damage is done by the
random errors of a noisy channel, he shows in principle how to
minimize rt, and he shows how many bits per second are required
to transmit the signal with a given degree of fidelity.

Shannon has also done a considerable amount of work concern-
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itg the transmission of messages over networks in which one mes-
slge may interfere with another mess age. The simplest case is that
of transmission of messages in both directions over the same
channel between two points, ,4 and .8. As a very special case, we
will assume that the circuit acts the same from B to A as from
A t o B .

Suppose that we plot the channel capacity for transmission from
A to B against the channel capacity for transmission from B to A,
as shown in Figure XIV-3. We can imagine two very simple cases.
In one case, transmission from B to A does not interfere with
transmission from A to B, and transmission from A to B does not
interfere with transmission from B to A. In this case, the curye
consists of the horizontal solid line giving the channel cap actiy
from B to A and the vertical solid line giving the channel cap acity
from ,4 to B.

Or we can imagine that at one time we can transmit in one
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direction only, either from A to B or from B to A. Then if we are

transmitting from A to B one-third of the time, we can transmit

from B to A only two-thirds of the time, and so on. The sum of the

channel capacity from B to A and the channel capacity from A to B

must be a constant, and the result is the dashed 45o line of Figure

XIV-3.
In an intermediate case, in which there is some interference be-

tween transmission in the two directions, we will get a curve

roughly of the form of the dotted line of Figure XIV-3.

The study of efficient encoding continues to command the atten-

tion of information theorists. In the case of discrete channels, in-

formation theorists continually better codes for correcting A errors

in a sequence of B digits.
Infoimation theorists also seek best codes for transmitting in-

formation over a noisy continuous channel. In 1959, Shannon

published a long paper in which he arrived at upPer and lower

bounds on the attainable error rates for codes of various com-

plexity (that is, length) used in signaling over a continuous channel

witn Gaussian noise. Currently, convolutional codes and Viterbi

decodi.g are favored, and ingenious men vie in making better and

cheaper decoders.
Further, engineers who wish to improve electrical communication

continually try to find new encoding and transmission schemes

which are simple enough to be useful. They try to encode television

and voice signals into as few binary digits per second as they can;

the approaches they use have been indicated in Chapter VII. Such

efficient encoding is growing in importance because digital trans-

mission of signals ( as in pulse code modulation ) is displacing

analog communication. It will grow in importance as the encrypt-

irg of signals in order to obtain privacy or secrecy becomes more

commotr, for secrecy is best attained by digital means.
Engineers also lbok for simple and efficient error-correcting

means useful in correcting the multiple errors which occur in the

transmission of digital signals over existing telephone circuits. The

use of digital tranimission in transmitting text and in transmitting

business ind technical data is growing by leaps and bounds, both

in military and in civilian applications. Telephone circuits go

almost eurty*here. To keep pace with data, we must use voice
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circuits for data. Here error correction by error detection and re-
transmission is the favored technique. But, error-correcting codes
have their place.

There are special circumstances that call for special means of
modulation. Mobile radio is one. In a city, signals reach the
vehicle from many directions after bouncing off many buildings,
and a short pulse would be received as a smear of pulses which
have traveled different distances over different paths. Here great
ingenuity is needed in finding the best way to use a large ovlrall
bandwidth in improving transmission.

Military communication, especially in the face of jamming, poses
a host of problems.

Perhaps some would regard all this as engineering drudgery,
unexciting compared with the broad philosophical vistas which
information theory seems to open to us. Can an informed under-
standing, a loving appreciation of the nature, virtues and distinc-
tions among the French Impressionists or the Dutch genre
painters ever be so meaningful as a sudden and bewildering con-
frontation with a new and strange world of art, such as the
Japanese?

Yet, the connoisseur who pursues with devotion the details of a
field may well have as much insight and as sound values as the
rapturous dilettante. There is some intellectual obligation to
appreciate a field for what it is rather than for the reactions it
excites in the minds of the uninformed. I hope that this book has
its exciting aspects, but I also hope that it won't lead the reader to
a view of information theory widely difterent from that held by
informed workers in the field. Hence, it is perhaps well to end
in a sober vein.



APPENDIX: On Mathematical
Notation

TnE READER wILL FIND a fairly liberal use of mathematical
notation in this book, includirg a number of equations. This may
incline him to say the book is full of mathematics.

Of course it is. Communication theory is a mathematical theory,
and, as this book is an exposition of communication theory, it is
bound to contain mathematics. The reader should not, however,
confuse the mathematics with the notation used. The book could
contain just as much mathematics and not include one symbol or
equality sign.

The Babylonians and the Indians managed quite a lot of mathe-
matics, including parts of algebra, without the aid of anything
more than words and sentences. Mathematical notation came
much later. Its purpose is to make mathematics easier, and it does
for anyone who becomes familiar with it. It replaces long strings
of words which would have to be used over and over agaLn with
simple signs. It provides convenient names for quantities that we
talk about. It presents relations concisely and graphically to the
€Ye, so that one can see at a glance the relations among quantities
which would otherwise be strewn through sentences that the eye
would be perplexed to comprehend as a whole.

The use of mathematical notation merely expresses or represents
mathematics, just as letters represent words or notes represent
music. Mathernatical notation can represent nonsense or nothirg,
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just as jumbled letters or jumbled notes can represent nothing.
Crackpots often write tracts full of mathematical notation which
stands for no mathematics at all.

In this book I have tried to put all the important ideas into words
in sentences. But, because it is simpler and easier to understand
things written concisely in mathematical notation, I have in most
cases put statements into mathematical notation also. I have to a
degree explained this throughout the book, but here I summ ar:ze
and enlarge on these explanations. I have also ventured to include
a few simple related matters which are not used elsewhere in this
book, in the hope that these may be of some general use or interest
to the reader.

The first thing to be noted is that letters can stand for numbers
and for other things as well. Thus, in Chapter V, Bi stands for a
group or sequence of symbols or characters, a group of letters
perhaps; / signifies which group. For the first group of letters, jr
might be l, and that first group might be A\AA, for instance. For
another value of j, say, l2l, the group of letters might be ZQE.

We often have occasion to add, subtract, multiply, or divide
numbers. Sometimes we represent the numbers by letters. Ex-
amples of the notations for these operations are:

Addition
2 + 3
a + d

We read a + d as "a plus d." We may interprct a * d as the sum of
the number represented by a and the number represent ed by d.

Subtraction
5  - 4
q -  r

We read q r as "q mrnus r."

Multiplication
3  X  5  o r  3 : 5  o r  ( 3 )  ( 5 )

u x v o r u . v o r u v

lf we did not use parentheses to separate 3 and 5 in (3) (5), we
would interpret the two digits as 35 (thirty-five). We can use
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Parentheses to distinguish any quantities we want to multiply. We
could write uv as (u) (v),but we don't need to. We read (3) (5) as
3 times 5, but we readuv as"ttv" with no pause between the uand
v, rather than as "u times y."

Division

6+3o r9o r  6 /3
3

l /p

We ordinarily read | / p as 'o I over p " rather than as o'I divided
by pj'

Quantities included in parentheses are treated as one number'
thus

6 .: 3 : L

= (t2) (2) _ 24
=ac+bc

1o,
p

( 2++ t
3

(  +  8 ) (2 )
(a + b),

We read (a + b) either as"o plus b" or as "the quantity a plus b,"
if just saying o'a phus b" might lead to confusion. Thus, if we said
"c times a plus b" we might mean ca + b, though we would read
ca + D as "ca plus b." If we say "c times the quanttty a plus b," it
is clear that we mean c(a + b).

The idea of a probability is used frequently in this book. We
might say, for instance, that in a string of symbols the probability
of the jth symbol is p(j ).We read this "p of j." '

The symbols might be words, numbers, or letters. We can
imagine that the symbols are tabulated; various values of j can be
taken as various numbers which refer to the symbols. Thble XVI,
shows one way in which the numbers,/ can be assigned to the let-
ters of the alphabet.

When we wish to refer to the probability of a particular letter, N
for instance, we could, I suppose, refer to this asp(5), since 5 refers
to N in the above table. We'd ordinarity simply write /(N),
however.

What is this probability? It is the fraction of the number of
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TenrE XVI

28r

Value of j Corresponding Letter

etc.

letters in a long passage which are the letter in question. Thus, out
of a million letters, close to 130,000 will be E's, So

p(E)-ffi-13
Sometimes we speak of probabilities of two things occurrirg

together, either in sequence or simultaneously. For instance, x may
stand for the letter we send and y for the letter we receive. p@, y)
is the probability of sending x and receivi ng y. We read this "p-o,f
x, / (we represent the comma by u pause). For instance, we might
send the particular letter W and receive the particular letter B. The
probability of this particular event would be written /(W, B).
Other particular examples of p(x, y) are p(A, A), p(Q, S), p(E, E),
etc. p(x,7) stands for all such instances.

We also have conditional probabilities. For instance, if I transmit
x, what is the probability of receiving 7? We write this conditional
probability pr(/).We read this 'p sub x of y." Many authors write
such a conditional probability p(y I x), which can be read as, "the
probability of y given x." I have used the same notation which
Shannon used in his original paper on communication theory.

Let us now write down a simple mathematical relation and
interpret it:

p (x 'y )  -  p (x )  p , (y )

That is, the probability of encounterirg x and y together is the
probability of encounterirg x times the probability of encounter-
in1 /, when we do encounter x. Or it may seem clearer to say that

E
T
A
o
N
R

I
2
3
4
5
6
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the number of times we find x and y together must be the number
of times we find x times the fraction of times that y, rather than
some other letter, is associated with x.

We frequently want to add many things up; we represent this
by means of the summation sign >, which is the Greek letter
sigma. S.rppose thatT stands for an integer, so thati may be 0, l,
2, 3, 4, 5, etc. Suppose we want to represent

0 +  1+  2  +  3  +  4  +  5  +  6  +  7  +  8

which of course is equal to 36. We write this

We read this, "the sum of i from/ equals 0 toi equals 8." The )
sign means sum. The 7 _ 0 at the bottom means to start with 0,
and the j _ 8 at the top means to stop with 8. The i to the right
of the sign means that what we are summitg is just the integers
themselves.

We might have a number of quantities for which / merely acts
as a label. These might be the probabilities of various letters, for
instance, accorditg to Thble XVII.

If we wanted to sum these probabilities for all letters of the

alphabet we would write

26

,

j - l

We read this "the sum of pU ) fromT equals I to 26." This quantity
is of course equal to 1. The fraction of times A occurs per letter

plus the fractiron of times B occurs per ietter, and so or, is the

iraction of times per letter that any letter at aLl occurs, and one

letter occurs per letter.
If we just write

j - 8

j - 0

j
p( j  )
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TnnrE XVII
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Value of j Letter Referred to
Probability of
Letter, p ( j )

I
2
3
4
5
6
7
8
9

l0
l l
t 2
l 3
t4
l 5
t 6
t 7
l 8
t 9
20
2r
22
23
24
25
26

E
T
A
o
N
R
I
S
H
D
L
F
C
M
U
G
Y
P
w
B
V
K
X
J
a
Z

.  r3105

.10468

.0815 I

.07995

.07098

.06882

.0634s

.06101

.05259

.03788

.03389

.02924

.02758

.02536

.02459

.01994

.01982

.01982

.01s39

.4t4/'0

.00919

.00420

.00166

.00132

.00121

.00077

it means to sum for all values of j, that is, for all that represent
something. We read this, "the sum of p(j ) over j." If j is a letter
of the alphabet, then we will sum over, that is, add up, twenty-six
different probabilities.

Sometimes we have an expression involvirg two letters, such as
i and i. We may want to sum with respect to one of the se indices.
For instan ce, p Q, j ) might be the probability of lett er i occurring
followed by letter 7, &s, p(Q, V) would be the probability of
encountering the sequence QV. We could write, for instance
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We read this, "the
says, let j assume
We note that

This reads, "the sum of p of i,Jt over/ equalrp of i.'o If we add up

th. probabilities of a letter followed by every possible letter we get
just the probability of the letter, since every time the letter orrltt
it is followed by some letter.

Besides addition, subtraction, multiplication, and division we
also want to represent a number or quantity multiplied by itself
some number of times. We do this by writing the number of times
tl. quantity is to be multiplied by itself above and to the right of
the quantity; this number is called an exponent.

2 1  : 2
o'2to the first (or 2 to the first power) equals 2." I is the exponent.

2 2 : 4

"2 squared, (or 2 to the second) equals 4." 2 is the exponent.

2 3 = 8
o'2 cubed (or 2 to the third) equals 8." 3 is the exponent.

2 4 :  1 6
oo2 to the fourth equals sixteen ." 4 is the exponent.

We can let the exponent be a letter, n; thus, 2n, which we read
"2 to the n," means multiply 2 by itself n times. en,which we read
" o to the n," means multiply o by itself n times.

To get consistent mathematical results we must say

Q o :  I

"a to the zero equals 1," regardless of what numbet o may be.

Symbols, Signals and Noise
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sum of p of i,7 with respect to (or, over)7. " This
every possible value and add the probabilities.
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On Mathematical Notation

Mathematics also allows fractional and negative exponents.
should particularly note that

A-n : l /a"

We read s-n as " o to the minus n. " We read | / a" as 'oone over c
to the n."

It is also worth noting that

AnAm : g(n+ml

o'a to the n, a to the m equals a to the n plus m." Thus

2 3 X 2 2 _ 8 X 4 = 3 2 - 2 5
o r  

4 L / z x  4 t / 2 : 4 L : 4 .

A quantity raised to the Vz power is the square root

4L/2 - the square root of 4 - 2.

It is convenient to represent large numbers by means of the
powers of l0 or some other number

3 . 5 X 1 0 6 - 3 , 5 0 0 , 0 0 0

This is read "three point five times ten to the sixth, (or ten to
the six).''

The only other mathematical function which is referred to exten-
sively in this book is the logarithm. Logarithms can have different
bases. Except in instances specifically noted in Chapter X, all the
logarithms in this book have the base 2. The logarithm to the base 2
of a number is the power to whi ch 2 must be raised to equal the
number. The logarithm of any number x is written log x and read
"log x." Thus, the deflnition of the logarithm tcl the base 2, as given
above, is expressed mathematically by:

That is, oo2 to the
As an example

)lot, r : X

log x equals x."

l o g S - 3
2 3 : 8
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Other logarithms to the base 2 arc

x
I
2
4
8

l6
32
64

log x
0
I
2
3
4
5
6

Some important properties of logarithms should be noted:

logab -  log  a  +Logb
log a/b - log a - log b
I o g d ,  -  c l o g d

As a special case of the last relation,

l o g 2 *  -  m l o g T :  l n

Except in information theory, logarithms to the base 2 are not
used. More commonly, logarithms to the base l0 or the base e
(e : 2.718 approximately) are used.

Let us for the moment write the logarithm of x to the base 2 as
logz x, the logarithm to the base l0 as logro x, and the logarithm
to the base e as log" x. It is useful to note that

rogz x- (logz lo) (logro x) - l99to {logrc 2
logz x - 3.32 logro x

Logz x : (logz e) (1og , x) =t&+

logz x _ 1.44 log.- x

The logarithm to the base e is called the natural logarithm. It
has a number of simple and important mathematical properties.
For instance, if x is much smaller than l, then approximately

log"( l  +  x)  -  x

Use is made of this approximation in Chapter X.
In the text of the book, by log x we always mean logz x.
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ADDREss: In a computer, a number designating a part of the memory used

to store a number, also the part of the memory which is used to

store a number.
ALrHABET: The alphabet, the alphabet plus the space, any given set of

symbols or signals from which messages are constructed.
AMpLrruDE: Magnitude, intensity, height. The amplitude of a sine wave is

its greatest departure from zero, its greatest height above or below
zero.

ATTENUATToN: Decrease in the amplitude of a sine wave during trans-
mission.

AUroMAroN: A complicated and ingenious machine. Elaborate clocks
which parade figures on the hour, automatic telephone switching
systems, and electronic computers are automata.

AXIS: One of a number of mutually perpendicular lines which constitute
a coordinate system.

BAND: A range or strip of frcquencies.
BAND LIMITED: Having no frequencies lying outside of a certain band of

frequencies.
BAND wIDTH: The width of a band of frequencies, measured in cps.
BINARv DIGIr: A 0 or a 1.0 and I are the binary digits.
BIr: The choice between two equally probable possibilities.
BLocK: A sequence of symbols, such as letters or digits.
BLocK ENCoDING: Encoding a message for transmission, not letter by letter

or digit by digit, but, rather, encoding a sequence of symbols
together.

BorrzuANN's coNSTANT: A constant important in radiation and other
thermal phenomena. Boltzmann's constant is designated by the
letter k. k - 1.37 X l0-23 joules per degree Celsius (centigrade).

287
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BnowNIAN MorIoN: Erratic motion of very small particles caused by the
impacts of the molecules of a liquid or gas.

cAPAcIToR: An electrical device or circuit element which is made up of
two metal sheets, usually of thin metal foil, separated by u ihirt
dielectric (insulating) layer. A capacitor stores electric chaige.

CAPACITY: The capacity of a communication channel is equaf to the
number of bits per second which can be transmitted bv means of
the channel. 

J

CHANNEL voCoDER: A vocoder in which the speech is analyzed by measur-
ing its energy in a number of fixed frequency ranges or bands.

cHEcK DIGITS: Symbols sent in addition to the number of symbols in the
original message, in order to make it possible to detect the presence
of or correct errors in transmission.

CLASSTCAL: Prequantum or prerelativistic.
COMMAND: One of a number of elementary operations a computer can

carry out, a.9., add, multiply, print out, and so on.
CoMPLICATED MACHINT: An automaton.
coNrAcr: A piece of metal which can be brought into contact with another

piece of metal (another contact) in order to close an electric circuit.
cooRDINATE: A distance of a point in a space from the origin in a direction

parallel to an axis. In three-dimensional space, how far up or down,
east or west, north or south a point is from a specified origin.

coRE (magnetic): A closed loop of magnetic material linked by wires.
Cores are used in the memory of an electronic computer. Magneti-
zation one way around the core means l; magnetiiation the other
way around the core means 0.

cPS: Cycles per second, the terms in which frequency is measured.
CYCLE: A complete variation of a sine wave, from maximum, to minimum.

to maximum again.
DELAY: The difference between the time a signal is received and the time

it was sent.
DETECTION THEORY: Theory concerning when the presence of a signal can

be determined even though the signal is mixed with a Jpecified
amount of noise.

DIGRAM PROBABILITY: The probability that a particular letter will follow
another particular letter.

DIMENSION: The number of numbers or coordinates necessary to specify
the position in a space is the number of dimensions ln ttre rpur..
The space of experience has three dimensions: up-dowr, east-west,
north-south.

DIODE: A device which will conduct electricity in one direction but not in
the other direction.



Glossary 289

DTscRETE souRcE: A message source which produces a sequence of symbols

such as letters or digits, rather than an electric signal which may

have any value at a given time.

DrsroRrroNlEss: Tiansmission is distortionless if the attenuation is the

same for sine waves of all frequencies and if the delay is the same

for sine waves of all frequencies.

DouBLE-cuRRENr TELEGRArHv: Telegraphy in which use is made of three

distinct conditions: no current, current flowing into the wire, and

current flowing out of the wire.

ELEcTRoMAGNETTc wAvE: A wave made up of changing electric and mag-

netic fields. Light and radio waves are electromagnetic waves.

ENERGv LEvEL: According to quantum mechanics, a particle (atom,

electron) cannot have any energy, but only one of many particular

energies. A particle is in a particular energy level when it has the

energy and motion characteristic of that energy level.

ENsEMBTB: All of an infinite number of things taken together, such as, all

the messages that a given message source can produce.

ENTRopy: The entropy of communication theory, measured in bits per

symbol or bits per second, is equal to the average number of binary

digits per symbol or per second which are needed in order to

transmit messages produced by the source. In communication

theory, entropy is interpreted as average uncertainty or choice, €.9.,

the average uncertainty as to what symbol the source will produce

next or the average choice the source has as to what symbol it will

produce next. The entropy of statistical mechanics measures the

uncertainty as to which of many possible states a physical system is

actually in.

EeurvocATroN: The uncertainty as to what symbols were transmitted when

the received symbols are known.

ERGoDrc: A source of text is ergodic if each ensemble aver&g€, taken over

all messages the source can produce, is the same as the correspond-

ing average taken over the length of a message. See Chapter I I I .

FTLTER: An electrical network which attenuates sinusoidal signals of some

frequencies more than it attenuates sinusoidal signals of other

frequencies. A filter may transmit one band of frequencies and

reject all other frequencies.

FrNrrE-srATE MAcHTNE: A machine which has only a finite number of

different states or conditions. A switch which can be set at any of

ten positions is a very simple finite-state machine. A pointer which

can be set at any of an infinite number of positions is not a finite-

state machine.
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FM: Frequency modulation, representing the amplitude of a signal to be

transmitted by the frequency of the wave which is transmitted.
FORMANT: In speech sounds, there is much energy in a few ranges of

frequency. Strong energy in a particular range of frequencies in a
speech sound constitutes a formant. There are two or three principal
formants in speech.

FREQUENCY: The reciprocal of the period of a sine wave; the number of
peaks per second.

GALVANOMETER: A device used to detect or measure weak electric currents.
GAUSSIAN NOISE: Noise in which the chance that the intensity measured

at any time has a certain value follows one very particular law.
HypERcuBE: The multidimensional analog of a cube.
HypERSpHERE: The multidimensio nal analog of a sphere.
INDUCTOR: An electric device or circuit element made up of a coil of highly

conducting wire, usually copper. The coil may be wound on a
magnetic core. An inductor resists changes in elictric current.

INPUr SIGNAL: The signal fed into a transmission system or other device.
JoHNsoN NOISE: Electromagnetic noise emitted from hot bodies; thermal

noise.
JOULE: A measure or amount of energy or work.
LATENCY: Interval of time between a stimulus and the response to it.
LINE SPEED: The rate at which distinct, different current values can be

transmitted over a telegraph circuit.
LINEAR: An electric circuit or any system or device is linear if the response

to the sum of two signals is the sum of the responses which would
have been obtained had the signals been appliid separately. If the
output of a device at a given time can be expressed as the sum of
products of inputs at previous times and constants which depend
only on remoteness in time, the device is necessarily linear.

LINEAR PREDICTION: Prediction of the future value of a signal by means
of a linear device.

MAP: To assign on one diagram a point corresponding to every point on
another diagram.

MAxwELL's DEMON: A hypothetical and impossible creature who, without
expenditure of energY, can see a molecule coming in a gas which
is all at one temperature and act on the basis of tt ir information.

MEMoRv: The part of an electronic computer which stores or remembers
numbers.

MEssAGn: A string of symbols; an electric signal.
MESSAGE souRcn: A device or person which generates messages.
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NEGATTvE FEEDBAcK: The use of the output of a device to change the

input in such a way as to reduce the difference between the input

and a prescribed input.
NEGATTvE FEEDBACK AMeLIFIER: An amplifier in which negative feedback

is used in order to make the output very nearly u constant times

the input, despite imperfections in the tubes or transistors used in

the amplifier.
NETwonr: An interconnection of resistors, capacitors, and inductors.

NorsE: Any undesired disturbance in a signaling system, such as, random

electric currents in a telephone system. Noise is observed as static

or hissing in radio receivers and as "snow" in TV.

NorsE TEMnERATURE: The temperature a body would have to have in order

to emit Johnson noise of any intensity equal to the intensity of an

observed or computed noise.

NoNLTNEAR pREDrcrroN: Prediction of the future value of a signal by

means of a nonlinear device, that is, any device which is not linear.

oRrcrN: The point at which the axes of a coordinate system intersect.

ourpur srcNAL: The signal which comes out of a transmission system or

device.
pERroD: The time interval between two successive peaks of a sine wave.
pERIoDIc: Repeating exactly and regularly time after time.
nERrETUAL MorroN: Obtaining limitless mechanical energy or work con-

trary to physical laws. Perpetual-motion machines of the first kind

would generate energy without source. Perpetual-motion machines

of the second kind would turn the unavailable energy of the heat

of a body which is all at one temperature into ordered mechanical

work or energy.
rHASE: A measure of the time at which a sine wave reaches its greatest

height. The phase angle between two sine waves of the same

frequency is proportional to the fraction of the period separating

their peak values.
pHAsE sHrFT: Delay measured as a fraction of the period rather than as a

time difference.
pHAsE spACE: A multidimensional space in which the velocity and the

position of each particle of a physical system is represented by

distance parallel to a separate axis.
rHoNEME: A class of allied speech sounds, the substitution of one of which

for another in a word will not cause a change in meaning. The

sounds of b and p are different phonemes, the substitution of one

of which for another can change the meaning of a word.
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POTENTIAL THEORY: The mathematical study of certain equations and their

solutions. The results apply to gravitational fields, to ,..tain aspects
of electric and magnetic fields, and to certain aspects of the flow
of air and liquids.

PowER: Rate of doing work or of expending energy. A watt is I joule per
second.

PROBABTLTTY: In mathematics, a number between 0 and I associated with
an event. In applications this number is the fraction of times the
event occurs in many independent repetitions of an experiment. E.g..
the probability that an ideal, unbiased coin will turn up heads is .5.

QUANTUM: A small, discrete amount of energy and, especially, of electro-
magnetic energy.

QUANTUM THEORY: Physical theory that takes into account the fact that
energy and other physical quantities are observed in discrete
amounts.

RADTATE: To emit electromagnetic waves.
RADIATION: Electromagnetic waves emitted from a hot body (anything

above absolut e zero temperature).
RANDoM: Unpredictable.
REDUNDANT: A redundant signal contains detail not necessary to deter-

mine the intent of the sender. If each digit of a number is sent twice
( l  I  0  0  I  l i ns teadof  I  0  l ) thes ign i lo rmessage is redundant .

REGISTER: In a computer, aspecial memory unit into which numbers to
be operated on (to be added, for instance) are transferred.

RELAY: An electrical device consisting of an electromagnet, a magnetic bar
which moves when the electromagnet is enelgrzed, urrd pairs of
contacts which open or close when the bar moves.

RESISTOR: An electrical device or circuit element which may be a coil of
fine poorly conducting wire, a thin film of poorly conducting
material, such as carbon, or a rod of poorly cond,rciit g material.
A resistor resists the flow of electric current.

SAMPLE: The value or magnitude of a continuously varying signal at a
particular specified time.

SAMPLING THEOREM: A signal of band width W cps is perfectly specified
or described by its exact values at 2W equally spaced- times per
second.

SERVOMECHANISM: A device which acts on the basis of information received
to change the information which will be received in the future in
accordance with a specific goal. A thermostat which measures the
temperature of a room and controls the furnace to keep the tem-
perature at a given value is a servomechanism.

SIGN: In medicine' something which a physician can observe, such as an



Glossary 293

elevated temperature. In linguistics, a pictograph or other imita-

tive drawing.
srcNAL: Any varying electric current deliberately transmitted by an elec-

trical communication system.
srNE wAvE: A smooth, never-ending rising and falling mathematical curve.

A plot vs. time of the height of a crank attached to a shaft which

rotates at a constant speed is a sine wave.

sTNGLE-cuRRENT TELEGRArHv: Telegraphy in which use is made of two

distinct conditions: no current and current flowing into or out of

the wire.
spAcE: A real or imagin ary re1ion in which the position of an object can

be specified by means of some number of coordinates.
srATroNARy: A machine, or process, or source of text is stationary, roughly,

if its properties do not change with time. See Chapter III.

srATrsrrcAl MEcHANrcs: Provides an explanation of the laws of thermo-

dynamics in terms of the average motions of many particles or the

average vibrations of a solid.
srArrsrrcs: In mathematical theories, we can specify or assign probabilities

to various events. In judging the bias of an actual coin, we collect

data as to how many times heads and tails turn up, and on the basis

of these data we make a somewhat imperfect statistical estimate

of the probability that heads will turn up. Statistics are estimates

of probability on the basis of data. More loosely, 'othe statistics of

a mess age source" refers to all the probabilities which describe or

characterrze the source.
srocHAsTrc: A machine or any process which has an output, such as

letters or numbers, is stochastic if the output is in part dependent

on truly random or unpredictable events.
sroRE: Memory.
suBJECr: A human animal on which psychological experiments are carried

out.
syMBoL: A letter, digit, or one of a group of agreed upon marks. Linguists

distinguish a symbol, whose association with meaning or objects

is arbitraty, from a sign, such as a pictograph of a waterfall.

syMproM: In medicine, something that the physician can know only

through the patient's testimon), such as, a headache, as opposed

to a sign.
sysrEM: In engineering, a collection of components or devices intended

to perform some over-all functions, such as, a telephone switching

system. In thermodynamics and statistical mechanics, a particular

collection of material bodies and radiation which is under consider-

ation, such as, the gas in a container.
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rEssARAcr: The four-dimensional analog of a cube, a hypercube of four
dimensions.

THEoREM: A statement whose truth has
ment based on definitions and on
be true.

THERMAL NorsE: Johnson noise.
THERMODYNAMICS: The branch of science dealing with the transformation

of heat into mechanical work and related matters.
rorAl ENERGY: The total energy of a signal is its average power times its

duration.
TRANSISTOR: An electronic device making use of electron flow in a solid,

which can amplify signals and perform other functions.
vACuuM TUBE: An electronic device making use of electron flow in a

vacuum, which can amplify signals and perform other functions.
vocoDrn: A speech transmission system in which a machine at the trans-

mitting end produces a description of the speech; the speech itself
is not transmitted, but the description is transmitted, and the
description is used to control an artificial speaking machine at the
receiving end which imitates the original speech.

wATr: A power of I joule per second.
WAVEGUIDE: A metal tube used to transmit and guide very short electro-

magnetic waves.
wHIrE NOISE: Noise in which all frequencies in a given band have equal

powers.
zIPF's LAw: An empirical rule that the number of occurrences of a word

in a long stretch of text is the reciprocal of the order of frequency
of occurrence. For example, the hundredth most frequent word
occurs approximately | / 100 as many times as the moit frequent
word.

been demonstrated by an argu-
assumptions which are taken to
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Abbott's Flatland, 166
Absolute zero, 188,292
Acoustics, 126; continuous sources in,

59; network theory in, 6
Addresses, defined, 222, 287; illustrated,

223
Aerodynamics, 20; potential theory in, 6
Aiken, Howard ,220
Algebra, 278; Boolean, 221
Alphabet, defined, 2871' see also Letters

of alphabet
Ambiguity, in sentences, I l3-ll4
Arnplification, by radio receivers, 188-

l 9 l
Amplifiers, 294; broad-band and nar-

row-band, 188; gain in,2l7; Maser,
l9l; negative feedback, 2lG2l8,
2'27

Ampl i tudes ,  l3 l ;  de f ined,  31 ,287;  in
pulse code modulation, 132-133; in
samples of band-limited signals,
17l-174; see also Attenuation

Antennas, 184-185; in interplanetary
communication, 19?

Approximation s, see Word approxima-
tions

Arithmetic, as mathematical theory, 7,
8; units in computers,223

Ashby,  G. Ross ,218
Attenuation, defined, 3J, 287; in distor-

tionless transmission, 289; by filters,
289; frequency and, 33-34; number
of current values and, 38

Automa ta, 209, 227 ; defined , 219, 287 ;
examples ol 287

Averages, ensemble, 58-59, 60; t ime,
58-59, 60

Averback,8. ,249
Axes, defined, 287; in multidimensional

spaces, 167 -169

Ayer,  A.  J. ,  on importance of  commu-
nication, I

Babbitt, Milton, xi
Band limited, defined ,287 ; signals, 170-

t82,272-27 4
Band width,  l3 l ,  173-17 5,  188*189,

1921' amount of information trans-
missible over, 40, 44; channel
capacity and, 178; defined, 38, 287;
power and, 178; represented by
amplitude, l7l

Bands, defined , 287; line speed and, 38
Bell, Alexander Graham, 30
Berkeley, Bishop, I 16, l l7, l l9
Binary digits, 206; alternative number of

patterns determined by, 71, 73-74;
contracted to "bitr" 98; computers
ond, 222,224; defined, 287; encod-
ine of text in, 74-75,7G77,78-80,
83-86, 88-90, 94-98; errors in trans-
mission of, 148-150, 157-163; not
necessarily same as "bitr" 98-100;
stored in computers, 2D, 223; in
transmrssion of speech, 148* I 50,
157-163: "tree of choice" of, 73-
7 4 . 9 9

295
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Binary system of notation, decimal sys-
tem and ,69-70,72-73,76-77: ocial
system and, 7l, 73

Bit rate, defined, 100
Bits, 8, 66; as contraction of ,.binary

digit ," 98; defined, 202, 287; as
measurement of entropy, g0_96,
88-94, 98- 100; not necessari ly
same as "binary digit , ' ,  98-100; i i r
psychological experiments, 230_
231; per quantum, lg1, 197

Black, Harold,216
Blake, William, ll7
Block encoding, 77, 90, 177, 182; check

digits in, 159- 16 I ; defined, 7 5 , 297 ;
error in, 149, 156-157

Blocks, defined, 75, 287; , ,distanceo,
between , 16l-162; entropy and,
90-93 , 94, 97 Huffman code and,
97 , l0l ; length ofl l0l - t03, 127

Bodies, forces or, 2-3; hot, 186, 207 ,
290,292; in motio\, 2

Bolitho, Douglas,259
Boltzmann, 209
Boltzmann's constant, 188, 202; defined,

287
Boolean algebra,22l
*Breakifrg," in modulation systems, l8l
Breakthrough, 140
Bricker, P. D., xi
B rooks ,F .B .J r . , 259
Brownian motion, 29; defined, 185, 288

C language,224
Cables, linearity of, 33 ; insulat ion of , 29;

transatl antic, 26, 29, l3g, 143;
voltage in,29

Cage, John, 255
Campbell, G. A., 30
Capacitors, 33; defined, 5,2gg
Capacity, channel, 97 ,98, 106, 155-156,

l5g-159, 164, 176, 275_276; de_
fined, 288; information, 97

Carnot, N. L. S., 20
Channel capacity, 107; band width and,

178; for continuous channel plus
noise, 176-177; defined, 97, 106,
164; entropy less than, 9g, 106;
errors in transmission and, 155_

Channel capaci ty (Continued)
156; measurement of, 164; with
messages in two directions, 275-
276; of symmetrical and unsym-
metrical binary channels, 158-159,
164-165

Channel vocoder, 13 8; defined , 288;
illustrat ed, 137

Channels, capacity of,  97,98, 106, 155-
156,  l5g-159,  164,  176,  275_276;
error-free, 163; noisy, 107 , 145-165 ,
170*182, 27 6; symmetrical binary,
t57*t59, t64*t65

Check digits, 159-161, 165; defined,288
Checker-playing computers, 224, 225
Cherry, Colin, I l8
Chess-playing comput ers, 224, 225
Choice, in finite-state machines, 54-56;

in langu &Be, 253-254; in message
sources,  62,  79-80,  8 l ;  see a lso
Bits, Freedom of choice

Chomsky, Noam, ll2-115, 260; Syntac-
tic Structures, I l3n.

Ciphers , 64, 27l-272
Circuits, accurate transmission by, 43;

contacts in, 288; linear, 33, 43-44;
relay, 220, 221; undersea, 25

Classical, defined, 288
Codes, in cryptography, 64, l 18, Z7l-

272; erroi-coirecting, 159- 163, 165,
276; Huffman, 94-97, 99, 100, l0l ,
105; in telegraphy, 24-29; see also
Encoding, Morse code

Coding, see Encoding
Communication, aim of , 79; as encod-

ing of messages, 78; interpl anetary ,
196-197; quantum effects and, 192-
196; see also Language

Communication theory (Information
theory), 18, I  26, 268-269; art and,
250-267; ergodic sources and, 60-
61,63; as general theory, 8-9; as
mathematical theory, ix-x, 9, 18,
60-6 I ,  63, 27 8; mult idirnensional
geometry in, 170, l8l ,  183; origins
of, I , 20-441 physics and, 24, I9B
psychology and, 229-249; useful-
ness of,8-9,269

Companding, defined, 132
Compilers,224
Complicated machine s, see Automata



Computers,  66,  209,  219,  287;  cores in,
222,288;  Data t ron ,  259;  dec is ions
of ,  221,  as f in i te-state machines,
62; grammar for" I l5 ; l i terary
work by, 264; memories (stores) ol
221-222, 290 music by, 225, 250,
253, 259-261; prediction by, 210-
212; programming, 221-225; relay,
22V221; transistor, 220; "under-
standing" in, 724; uses of., 224-226;
vacuum tube, 220; visual arts and,
2&-266

Contacts,  def ined.  288;  in re lavs,  ?92
Continuous signals, encoding of, 66-68,

7 8 ,  l 3 l - 1 4 3 , 2 7 6 ;  e n t r o p y  o f ,  l 3 l ;
f requency of ,  67 ,  13 I  ;  noise and,
170-182,  276;  theory  o f ,  170-182,
203

Coordinates, 167-169; defined, 288
Cores, rnagnetic, addresses in, 222;

defined, 288
Costel lo,  F.  M.,  x i
Cpr, defined, 3 1 , 288
Cryptography,  theory of  ,  27 l -272;  see

also Codes
Currents,  e lectr ic ,  detect ion of  ,27,290:

induced by magnetic f ield ,29n., Max-
we l l  on ,  5n . ;  in  te lephony,  30 ;  va lues
ol  28,  36-38,  44;  see also Double-
current telegraphy, Noise, Signals,

Single-current telegraphy
Cybernet ics,  4 l ;  de scr ibed,  208-210,

226-227; etymology of ,  208
Cycles, Carnot, 20; defined, 31, 288

Datatron computer,259
Decimal system of notation, 69, 72-73
Delay,  def ined,  33,  288;  in d istor t ionless

transmission, 289; see also Phase
shift

Detection theory, 208, 215:' defined, 288
Dielectrics, in capacitors, 5, 288
Digram probabi l i t ies,  51,  56,  57,  92-93;

defined, 50, 288
Dimensions,  def ined,  288;  four,  166-

167 ; inf inity of, 167 -170; phase
spaces as,  167;  two,  166;  up-down,
east-west, north-south, 288 ; seealso
One-to-one mapping

Diodes, defined, 288
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Discrete signals, theory of (Fundamental
theorem o f  the  no ise less  channe l ) ,
98, 106, 150-1 59,203

Discrete sources,  66,  67:  def ined,  59,
289: noise and, 150- I 56

Distance,  between blocks in code, l6 l -
r62

Distortionless, defined, 34, 289
DNA (Desoxyribonucleic acid), 65
Double-current telegraphy, defined, 27,,

289
Dudley,  Homer,  136
Dunn, Donald A. ,263

Ecke r t ,  J .P . , 220
Edison, Thomas, quadruplex telegraphy

of ,, 27 -29, 38
Efficient encodin g, 7 5-7 6, 77, 1A4., 106,

146-147 , 27 6: by block encoding,
l 0 l * 1 0 3 ,  1 5 6 - 1 5 7 ;  f o r  c o n t i n u o u s
signals,  l3 I  -  143, ,  27 6:  by Huffman
code, 94-98, l0 I ,  105 ; in Morse
code, 43,  13 I  ;  number of  b inary
d ig i t s  needed  i n ,  78 -80 ,  88 ;  p r i n -
ciples of, I 42; for TV transmission,
l3  I ,  139-  143,  27  6 ;  fo r  vo ice  t rans-
mission,  l3 l  ;  see also Encoding

Effort, economy of, in language, 238-
239, 242

Einstein, Albert,, 145, 167; on Brownian
mo t i on ,  185 ;  on  Newton ,  269

Electromagnet ic waves,  5n. ;  def ined,
289;  genera t ion  o f ,  185-186;  on
wi res ,  187-188

Electronic digital computers, see Com-
puters

Encod ing ,  8 ,  76 ,78 ;  "bes t "  way  o f , ,76 ,
77, ,  78-79;  into b inary notat ion,
74-75,76-77,  78-80 ,  83-86 ,  88-90 ,
94-98;  channel  capaci ty and ,  97 -

98;  of  cont inuous s ignals,  66-68,
78 ,  l 3 l - 143 ,  276 :  c r yp tog raph i c ,
64-65;  dangers in,  143-144; of
Eng l ish  tex t ,  56 ,  74-7  5 ,  76-80 ,  88 ,
94 -98 ,  l 0 l - 106 ,  127 -129 ;  i n  FM,
65,  178- I  79:  of  genet ic informat ion,
64-65;  Hagelbarger 's  method of ,
162; by Huffman code, 94-97 , 100,
105, 128; into Morse code, 24-
27 ,  65;  of  nonstat ionary sources,
5 9 n . ;  n o i s e  a n d ,  4 2 , 4 4 ,  1 4 4 , 2 7 6 :

Index
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Encodin g (Continued) Ergodic sources, defined, 59,63; English
writers &s, 63; as mathematical
models,  59-61,  63,  79,  172;  proba-
bil i ty in, 90, l7Z

Errors,  correct ion of ,  159- 163,  165;
detection of, 149-150; in noisy
channels,  ,  147 -  165;  reduct ion
through redundancy ol 149-150,
163, 164-165; in transmission of
binary digits, 148- I 50, lS'7 -163;
see also Check digits, Noise

Exponents, defined, 284

Fano, 94
Feedback, see Negative feedback
Fidelity criterion, l3l ,  274
Filtering, 208, 210, 215
Filters, 227; defined, 41,289; in smooth-

ing,215;  in vocoders,  136-138
Finite-state machines, defined, 289; de-

scription of, 54-56; electronic digi-
tal computers as,62; entropy of,93-
94, I 53 ; grammar and, I 03- I 04,
I  I  l -112,  l l4- l  l5 ;  i l lustrated,  55;
men as, 62, 103; randomness in,62

Flatland, 166
Flicker, in motion pictures and TV, l4l
FM, "breaking" in,  l8 l  ;  def ined ,  290;

encoding in, 65, 178-l7g
Foot-pound, l7 l
Formants, defined,290
Fortran, 224
Fourier, Joseph, analyzes sine waves,

30-34, 43*44
Freedom of choic e, 48; entropy and, 8 I ,

see also Choice
Frequency, l3 I ; defined, 31, Z9A; of in-

put and output sine waves, 33; of
letters in English, 47-54, 56, 63;
quantum effects and, 196; in speech,
I 35- 138; of TV signals, 67 ; of voice
signals, 67; of white noise, 173

Frequency modulation, see FM
Friedman, William F., 48
Fundamental theorem of the noiseless

channe l ,  106;  ana logous to  quan-
tum theory, 203; reasoning ol 150-
159,  163,  164,  1651 '  s ta ted ,  98 ,  156

Gabor, Dennis, "Theory of Communi-
cation," 43

Index

by patterns of pulses and spaces,
68-69, 78:'  physical phenomena
and, 184; quantum uncertainty and,
t94-197; of speech, 65, t3t-139,
27 6; in telephory, 65, 27 6-277 ; word
by word, 93, 143; see also Block
encoding, Blocks, Efficient encoding

Encrypting of signals, 276
Energy,  17l ;  e lectromagnet ic,  185;  as

formants, 290; free, 202, 204-206,
207; of  mechanical  mot ion,  185;
organized, 2A2; ratio, in signal and
noise samples ,  175-179, 182;  ther-
mal  and mechanical ,  2A2; see also
Quanta, Total energy

Energy level, defined ,203,289
English text, encoding of, 56, 7 4-7 5 ,

76 -90 ,  gg ,  g4_gg ,  l 0 l _106 ,  127_
129; see also Letters of alphabet,
Word approximations, Words

Eniac,220
Ensembles, 41, 42; defined , 57,289
Entropy,  l05i  per b lock,  91,  106;  chan-

nel  capaci ty and.  98,  106;  in com-
municat ion theory,  23-24,  80,2A2,
206,207; condi t ional ,  153;  of  con-
t i nuous  s i gna l s ,  l 3 l ;  de f i ned ,66 ,
80 ,202,289 es t imates  o f ,  91 ,  106;
of f inite-state machines, 93-9 4, 153:
f o rmu las  f o r ,  81 ,  84 ,  85 ;  g rammar
and ,  I  10 ,  I  l 5 ;  h i ghes r  poss ib l e  , 97 ,
106 ;  Hu f fman  code  and ,94 -98 :
human behavior  and,  229;  of
idealized gas, 203-205i per letter of
E n g l i s h  t e x t ,  l 0 l - 1 0 3 ,  l l l ,  1 3 0 ;
measured in "bits, 'o 80-81 ; message
sources and, 23, 8l-85 , BB-94, 105,
206; in model of noisy communica-
t ion  sys tem,  152-155;  per  no te  o f
music, 258-259; in physics (statisti-
cal  mechanics and thermodynam-
i cs ) ,  2 l - 23 ,  80 ,  198 ,  202 ,206 ,207 ;
probability and, 8 I -86; reversibility
and ,  2 l - 22 ;  o f  speech ,  139 ;  pe r
symbo l  , 91 ,94 ,  105

Equivocation, defined , 154, 289: in
enc- iphered message, 272;  entropy
and, I 5 5, 164; in symmetrical
b inary channels,  155,  164

Ergodic, defined, 289



Gain, in amplifiers, 217-218
Galvanometers, defined, 27 , 290
Gambling, information rate and, 270-

27r
Games, as illustrations of theorems and

proofs,  l0-14;  p layed by compu-
ters, 224, 225,226

Gas, 62, 293; as example of physical
system, 203-206; ideal expansion
of, 20n.; motion of molecules in,
185

Gaussian noise, 177, 276; defined, 173-
174, 276; monotony of, 251; same
as Johnson noise, 192

Genetics, information theory and, 64-65
Geometry,  4;  computers and ,224,225

Euclide an,7 , l4; multidimensional,
166- 170; in problems of continuous
signals,  l8 l ,  182

Gilbert, E. N., xi
Golay, Marcel J. 8., 159
Governors, as servomechanisms, 209,

2 t5 -216
Grammar, 253-254; in Chomsky, ll2-

I  l5 ;  en t ropy  and,  I10 ,  I  l5 ;  f in i te -
state machines and, 103- 104, I  I  l -
l l2, l l4-l 15; meaning and, ll4-
I16 ,  118;  phrase-s t ruc tu re ,  I  l5 ;
rules of, 109-l l0

Guilbaud, G. T., 52

Hagelbarger, D. W., 162
Hamming, R. W., 159
Harmon, L. D., 120
Hart ley, R.V. L.,  42; "Transmission of

lnformation," 39-40, 17 6
Heat, motion and, 185-186; waves, 186,

187; see also Temperature, Thermo-
dynamics

Heaviside, Oliver, 30
Heisenberg's uncertainty prin ciple, I94
Heftz, Heinrich Rudolf, 5
Hex (a game), l0- I 3
Hil ler, L. A. Jr.,259
Homeostasis, defined, 2 I 8
Hopkins, A. L. Jr., 259
Horsepower, defined, l7l
Hot bodies, 186,207, 290, 292
Howes, D. H.,240
Huffman code, 94-97,99,l0l, 105, 128

prefix property in, 100
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Hydrodynamics, 20
Hyman, Ruy, experiment on informa-

tion rate by, 230, 232, 234
Hypercubes, defined, 290
Hyperquant izat ion,  def ined,  132,  142;

effects of errors in, 149
Hyperspace, 170; amplitudes as coordi-

nates of point in, 172-175
Hyperspheres, defined, 290; volume of,

170,  173

Ideas, general, I  l9-120
Imaginary numbers, 170
Inductors, 33; defined , 5, 290
Infinite sets, l6
Information, definit ions of, 24; as han-

dled by man, 234; learning and,
230-237, 248-249; measurement of
amount of, 80; uncertainty and,
24; per word,254

lnformation capacity, 97
Information rate, 9l ; in man, 230-237 ,

238-239,250-251 see also Entropy
Information theory, see Communication

theory
Input signals, defined, 32,290
Institute of Radio Engineers, I
Insulation, of cables, 29; rn capacitors,

5 ,  288
Interference, current values and, 38; in-

tersymb ol, 29; see also Noise
Intersymbol interference, defiiied, 29
lsaacson, L. M ,, 259

Jenkins, H. M., xi
Johnson, J.  B. ,  188
Johnson noise (Thermal noise), 196-199;

defined, 290; formulas for, 188- 189,
195;  same as Gaussian noise,  192;
as standard for measurement, 190

Joule, defined , 17l, 290
Julesz, Bela, 264

Karl in, J. 8., 232
Kel ly ,  J .  L.  Jr . ,270
Kelvin, Lord, 30
Kelvin degrees, defined, 188
Klein, Martha,259
Kolmogoroff, A. N., 41,42, 44,214

Index
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Language, basic, 242; choice in, 253-
254; classification in, 122-123; as
code o f  communica t ion ,  118;  de-
fined, 253; economy of effort in,
238-239,,242; emotions and, l  l6-
l l7 ;  euphony in,  I  16-  l l7 ;  every-
day vs. scienti f ic,3-4, l2l ;  experi-
ence as basis for, 123 , 242, 245 ;
human brain and, 242,245; mean-
ing in, I l4- 124; random and non-
random factors in, 246; understand-
ing and, ll7, 123-124; see also
Grammar, Words, Zipf 's law

Latency, defined, 290; as proportional
to information conveye d, 230-232

Learning, experiments tn, 230*237, 248-
249; by machines, 261

Least effort, Zrpf 's law and ,238-239
Letters of alphabet, binary digit encod-

ing of, 74-75, 78, 128-129; entropy
p€r ,  l0 l -103,  I  I  l ,  130 ;  f requency
of  ,47-54,  56,63;  predictabi l i ty  o l
47-52; sequences of, 49-54,63,79;
suppression of, 48

Licklider, J. C. R., 232
Line speed, defined, 38, 290
Linear prediction, 2ll-212, 227; de-

fined, 290
Linearity, defined , 32-33, 290; of cir-

cuits, 33, 43-44
Liquids, motion of molecules in, 185
Logarithms, bases of, 285; explained,

36, 82, 285-286; Nyquist's relation
and, 36-38

Machines, desk calculating, 222; finite-
state, 54-56, 62, 93-94, 103-1A4,
I I  I  -  l l2, l l4- I  15, 153, 289; learn-
ing by, 261; pattern-matching, 120;
perpetual-motion, 198-202, 206,
2911, translation, 54, 123,225; Tur-
ing, ll4; see also Computers

Man, behavior of, 126, 225; emotions
in, I  l6- l l7:.  entropy and, 229; as
finite-state machine, 62, 103; infor-
mation rate rn, 230-237, 238-239,
250-251; memory in, 248-249; as
message source, 61, 103-104; nega-
tive feedback tn,2l8, 227: see also
Language

Mandelbrot, Benoit, xr, 240, 246-247
Map, defined, 290
Mapping, continuous, 16, 179; one-to-

one,  14*15,  16-17,  179
Mars, transmission from vicinity of,

t92*t94
Maser amplifier, 19l, 194
Mathematical models, function of, 45-

47; ergodic stationary sources &s,
59-61,  63,  79,  172;  in nerwork
theory, 46; to produce text, 56

Mathematics, intuitionist, l6; new tools
in, 182: notation in, 278-279; po-
tential theory in, 6; purpose of, l7;
theorems and proofs in, 9-17; tn
words and sentences, 278-279

Mathews, M. Y., xt, 253
Mauchly , J. W.,220
Maxwell, James Clerk, 198, 209; Elec-

tricity and Magnetism, 5n., 20;
equations of, 5-6, l8

Maxwell 's demon, 198-200; defined,
290; illustrated, 199

Meaning, language and , ll4-124
Memories,  221-222; addresses in,  222,

287; defined, 290
Memory, in man, 248-249
Merkel, J., 230
Message sources, 8; basis of knowledge

of, 6l ;  choice in, 62, 79-80, 8l ;  de-
fined, 206, 290; discrete , 59 , 66, 67 ,
150-156,289; entropy and,  23,81-
85,  88-94,  105,206;  ergodic,  57-61,
63, 79, 90, 172; intermittent, 9l;
natural structure of, 128; nonsta-
t ionary, 59n.; simultaneous, 80,
9l-92; station ar! , 57 -59, 172-173
statistics of, 293; as "tossed" coins,
8l*85;  see also Signals

Messages, defined, 290; increase and
decrease of number of, 8l. see also
Signals

Mil ler, George A.,248
Minsky, Marvin,226
Modes, 195
Modulation, improved systems of, 179,

277 ;  no ise  and,  180- l8 l  ;  see  a lso
FM, Pulse code modulation

Molecules, Maxwell 's demon and, 198-
200; mot ion of ,  185-186

Morse,  Samuel  F.  B. ,  24-25,42,43



Morse code, 24-25, 40, 65,97, 129, l3l:
l imitations on speed rn,25-27

Mot ion,  Ar istot le on,  2;  Brownian,29,
I  85,  288;  energy of ,  I  85 ;  of  mole-
cu les ,  185-  186;  Newton 's  laws o f ,
2-3,4-5,  g,  19,20,203

Mowbray, G. H.,231
Multiplex transmission, defined, 132
Music, 65,66; appreciation of ,251-252;

composition of, 250-253 ; electronic
compos i t ion  o f  ,  224,  225,250,  253,
259-261; Janet compiler in, 224;
ru les of  ,  254-2551'  stat is t ical  com-
position of, 255-259

Nash, see Hex
Negat ive feedback,  209,227;  in animal

organisms, 2 I  8;  def ined,  215, ,  291;
as element of nervous control, 219,
227;  l inear,  216;  nonl inear,  216:
unstabi l i ty  in,  216,227;  uses of ,  218

Negative feedback amplif iers, 21 6-218,
227 ; defined, 291; i l lustrat ed, 217

Nervous system, as f inite-state machine,
62; negative feedback and, 219,227

Network theory,  8,  l8;  in acoust ics,  6;
defined , 5-6; generali ty of, 6-7;
l inear i ty  in,  33;  mathemat ical
models in, 46

Networks,  5;  def ined,  5,291;  as f i l ters,
289; simultaneous transmission of
messages over, 275-276

Neumantr, P. G., 259
Newman, James R., ix, xi; World of

Mathematics, x
Newton, fsaac, 14, 269; laws of, 2-3,

4 - 5 , 8 ,  l g ,  2 0 ,  1 4 5 , 2 0 3
Noise, 43, 207; attempts to overcome,

29,  146-165, 170-182; "breaking"
to,  l8 l  ;  causes of ,  184- 185;  con-
tinuous signals and, 17 0- I 82 ; in
discrete communication systems,
150- 156; electromagnetic, 188- 190;
encoding and, 42, 44, 144,276; ex-
traction of signals from, 42, 44;
number of current values and, 38;
power required with, 192; in radar,
4 l -42,213-214; in radio,  145,  184-
I 85 ; I  88- l9 I ,  207 , 291; from ran-
dom er ror  in  samples ,  l3 l -132;  as
"snow" in TV, 144, 146,, 291; in
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Noise (Continued)
te legraphy ,  38 ,  147;  in  te lephony,
145,  162,  291;  in  te le typewr i te r
transmission, 146: see also Gaus-
sian noise, Johnson noise, White
noise

Noise figure, formula for, l9l
Noise temperature,  def ined,  291;  as

measure of noisiness of receiver,
r90-r92

Noiseless channel ,  theorem of ,  98,  106,
150-159,  163,  I  64 ,  165,203

Nonlinear prediction, 213-214; defined,
29r

Numbers, imaginary, 170; see also
Binary digits, Binary system of no-
tation

Nyquist, Harry, "Certain Factors Af-
fecting Telegraph Speed," 35-39,
176,  182;  "Certa in Topics in Tele-
graph Transmission Theory," 39;
on Johnson noise, 188

Off-on signals, encoding by, 68-77 ; see
also Single-current telegraphy

One-molecule heat engine, 200-201, 204
One-to-one mapping,  14-15,  l6-17,  179
Origin, defined, 291; see also Points
Output signals, defined, 32,291

Parabolic reflectors, 189
Part ic les,  indist inguishabi l i ty  of ,  7;

energy level ol 289
Period, defined, 31,291
Periodic, defined , 31, 291
Perpetual motion, defined, 291; ma-

chines, 198-202,206
Phase, defined, 31, 291
Phase angle, defined, 291
Phase shift, defined , 33, 291; see also

Delay
Phase space, 167 ; defined, 291
Philosophy, Greek, 125; as reassurance,

l17
Phoneme, defined, 291 ; vocoders, 138
Phrase-structure grammar, I l5
Physics, 125-126; communication

theory and,  24,  198;  theoretrcal ,  4
Pinkerton, Richard C., 258
Pitch, in speech, 135
Plosives,  135-136

Index
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Poe, Edgar Allen, The Gold Bug, 64; Quanta, defined, 292; energy of, 196;
rhythm of, I 16*117 transmission of bits and,' lg7

Poincard, Henri, 30 Quantization, defined, 68 ,, 132; in TV
Points, in multidimensional fpace, 167- signals, 142; see also Hyperquanti-

169, 172, 179, l8l, 182: see also zation
Origin

Pollack, H. O. ,273-274
Potential theory, 6; defined,292
Power, average, 172-173; band width

and, 178;  concentrated in short
pulses, 177; defined , 292; as meas-
ure of strength of signal and noise,
17 l ;  noise,  17 5-179,  182,  I  89,  192_
193; ratio (signal power to noise
power), 175-179, 182, 19l ; receiver,
193;  s ignal ,  173-179, 182,  189,  192;
transmitter, 193

Predictabil i ty, of chance even ts, 46-47;
of  let ters of  a lphabet,  47-52,  56,
283;  randomness and,  6 l -62:  see
also Probabilitv

Prediction, l inear,- 2l l-212, 227,, 290;
nonline ar,213-214, 291 ; from radar
data ,  2 rc -214,227

Prefix property, defined, 100
Probabil i ty, 293 condit ional, 5 l ,  281 :

def ined ,  292;  entropy and,  8 I  -86;
of letters in English tex t, 47 -52, 56,
283; in model of noisy communica-
t ions system, l5 I  -  153;  of  next  word
or  le t te r  in  message,  6 l  -62 ;  no ta-
t ion for, 28A-284; in word order,
86*87;  see also Digram probabi l i -
ties, Predictability, Tiigram proba-
bilities

Prtrgrams (for computers), 62, 221-225;
decisions in, 221; compilers for,
224

Prolate spheroidal functions, 274
Proofs, by computers, 224, 225; con-

struct ive,  13,  I  5-  l6;  i l lustrated by
"hex , "  l0 -13 ;  i l l us t ra ted  by  map-
ping, 14-17:' nature of, 9-17

Psychology, communication theory and,
229-249

Pulse code modulation, 132, 138, 142,
147,276;  in  musical  composi t ion,
250

Pupin, Michael, 30

Quantum theory, 125*126, 203; defined,
292; energy level in, 289; unpredic-
tability of signals in, 196

Quast le r ,  H . ,232

Radar,  noise in,  4 l -42, ,  213-214; predic-
t ion by ,210-2 14,227

Radiate, defined, 186, 292
Radiation, defined, 186, 292; equil ib-

rium of, 187; rates of, 186 see also
Quanta

Radiators, good and poor, 186
Rad io ,  no i se  i n .  145 ,  184 -185 ,  188 -191 ,

207 , 291
Radio telescopes, I 89- 190
Radio waves, as encoding of sounds of

speech, 7 6; see also Electromag-
netic waves

Random, defined,292
Ratio, of signal power to noise power,

175-179,  lg2 ,  lg l
Reading speed, 232-237 , 238-Z4l ; rec-

ognition and,24A
Receivers,  ef f ic ient ,  184-185; measure-

ment of performance of, l9O-192
Recognition, and reading speed, 240
Redundancy, 144; defined, 39,, 143, 292;

as means of reducing error, l4g-
1 5 0 , 1 6 3 . 1 6 4 - 1 6 5

Registers, 222; defined, 292
Relays, in circuits, 220, 221; defined,

292; malfunction of, 147
Registers, 223; defined ,292

189; as source of  noise power,  189
Response time, see Latency
Reversibility, indicated by entropy , Zl-

22
Rhoades,  M. V. ,  231
Riesz, R. R., 240
RNA (Ribonucleic acid), 65
Runyon, J. P., xi

Samples, 78; of band-l imited signals,
l7 l -175,  272-274; def ined,  292;
f ideli ty criterion and, l3 I ;  interval
between, 66-68; random errors in,
t3t-t32Quadruplex telegraphy, 27 -29, 38



Sampling theorem, defined, 66-67;
problems in, 272-274

Scanning, h TV, 140
Science, history of, 19-21; informed

ignorance in, 108 ; meaning of
words in, 3-4, 18, l2l

Secrecy, through encrypting of signals,
276; see also Codes

Sentences, ambiguous, I 13- ll4; genera-
tion of, I l2-ll5

Servomechanisms, 209; defined, 215, 292
Shannon, Claude E., xi, 43, 87-89, 93,

94,98, l2g-130, 146, 147,221,254,
270, 274, 276; "Communication
Theory of Secrecy Systems,n' 27l-
272; estimate of entropy per letter
of English text by, t0 i -i Of , I I l,
130; fundamental theorem of the
noiseless channel of, 98, 106, 150-
159, 163, 164, 165, 203; "Mathe-
matical Theory of Communica-
t ion," ix, I  ,9, 4l-42; use of mult i-
dimensional geometry by, 170, 173

Shannotr, M. E. (Betty),255,266
Shepard, R. N., xi
Signals, analogo 140; band-limited, 170-

182,272-274; broad-band, 143;
choice of "best" sort of, 42; con-
t inuous, 66-68, 78, l3 l-  143, 170-
182, 2A3, 276; defined, 196, 293;
demodulated, l8l ; discrete, 66, 67,
98, 106, 150-159, 163,164,165, 203;
encrypting of, 276; energy of, 172-
175, 182, 294; faint, 214; future
values of ,209; input and output, 32,
290-291; as points in multidimen-
sional space, 172, 179, l8l ,  182; in
quantum theory, 196; representa-
tion oq by samples, 66-68; unpre-
dictability of, 196; on wires, 187-
188; see also Messages, Modulation,
Redundancy, Samples

Signs, I 19; defined, 292-293
Sine waves, amplitude of, 31,287; cycles

in,  31,  288;  def ined,  31,  293
Fourier's analysis of, 30-34, 43-44;
period of, 3 I , 291; see also Fre-
quency

Single-current telegraphy (otr-on teleg-
raphy), defined , 27, 293

Slepian, David, xi, I 62, 214, 256, 274
Smoothing, 208, 210, fi lters in, 215

303

Sources , see Message sources
Space, defined,293; dimensions in, 166-

170; Euclidean, I 69; function, l8l ;
phase, 167 ,291; signal, l8 I

Space ships, transmission from, l9Ll97
Speech, encoding ol 65, l3 I - I 39, 276;

entropy of, 139; frequencies in,
135-138; pitch in, 135, 136; recog-
nit ion of, by computers,224,225;
samples in representation oe 67-
68; voiced and voiceless, 135-136;
see also Language, Words

Speed, line, 38; reading, 232-237,238-
241; of transmission , 24-27 ,36-38,
44,  130-131,  155- l  56,  164

Sperling , G., 249
Stadler, Maximilian, 255
Stars, radio noise from, 190
States, 203-206, 207; defined, 203; see

also Finite-state machines
Stationary, defined, 57-59, 293
Statistical mechanics, defined, 293;

entropy in, 22, 202, 206, 207
Statistics, defined, 293; of a message

source, 293
stibitz, G. R., 220,221
Stochastic, 60, 63; defined, 56, 293;

music, 255-259
Stores, 221-222; define d, 293
Subject, defined, 230, 293
Summation sign, explaine d, 282-284
Switching systems, 219-220, 224, 227,

287
Syllables, reading speed and, 234-236
Symbols, as current values, 28, 36-38;

defined , 293; probability of occur-
rence of, 88-94; primary and sec-
ondary, 40; selection of, 39-40

Symptoms, I 19; defined,293
Systems, 202-203; defined, 293; deter-

ministic, 46-47 ; switch ing, 219 -220,
224,227

Systems of notation, binary, 69-77;
decimal , 69-70; octal, 7 |

Szi lard, L.,21, 198

Telegraphy, noise in, 38, 147; Nyquist
oo, 35-39, 176, 182; as origin of
theory of communication, 20;
quadruplex, 27 -29, 38; speed of,
25-27, 36-38; and telephony on

Index
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Telegraphy (Continued) Transistors, 33; in comput ers, 220; de-
same wire, 38; see also Double-cur- fined, 294; malfunction of, 147
rent telegraphy, Single-current Tianslating machines, 54, 123, 225
telegraphy Tiansmission, accurate , 127; of continu-

Telep_hony, 126; continuous sources in, ous signals in the presence of noise,
59; currents in, 30; encoding in, 65, 170- 182; distorti,onless, 34, 2g9;
276-277; intercontinental relay in, error-free, 163- 164; length of time
277; military, 132; multiplex trans- ol 40, 175: microwau-e, 277; of
mission in, ] 32; negative feedback Morse code, 24-27; multiplex, 132;
in, 218; noise in, 145, 162, 291: "predictors" in, 129-130i rates of,
rates of  t ransmission in,  130-13l ;  24-27,36-38,  44,  130-131,  155-156,
gwltching systems in, 219-220,224, 164: of samples, 13l- 132; of TV
227,287;  and te legraphy on same s ignals,  139- i  43,194;  in  two di rec-
wire, 38 tions, 33, z7s-276; from vicinity of

Telescopes, radio, 189-190 Mars, t92-194
Teletyp:s, .errors in type-setting, 149: "Tree of choice," binary digits and, 73-

noise in, 146 74,99
Television, approximation of picture

signal  in,  l4 l ;  color ,  140,  142 ef-
f i c ien t  encod ing  in ,  139-  143,  276;
errors in transmission over, 132:
intercontinental relay rn, 277; inter-
p lanetary,  194;  quant izat ion in,
132; rates of transmission over.
130- l3 l ;  scann ing  in ,  140;  "snow"

' in, 144, 146. 291
Temperature, in degrees Kelvin, 188;

radiation and, 186-187; radio noise
power  and,  189-190;  o f  sun ,  190

Tessaracts, defined, 167, 294
Theorems, def ined,  294;  i l lustrated by

"hex , "  l0 -  l3 ;  i l l us t ra ted  by  map-
ping, 14-17; nature of, 9-17; proven
by cornputers ,  124,  126,ZZ4:225

Theory,  c lassi f icat ion ol  7-8;  funct ion
of , 4, 18, 125; general vs. narrow,
4-7; physical vs. mathematical,
6-8; potenti al, 6, 292; of relativity,
145; unif ied f ield, 5; see also Com-
munication theory, Network theory,
Quantum theory

Thermal equilibrium, 199-200
Thermal noise, see Johnson noise
Thermodynamics, 19, 293; defined , 294;

entropy in, 2l-23, I 98, 202, 207 ;
laws of, 198-199, 206, 207

Thermostats, 216, 227, 292
"Thinkiog," by computers, 226
Thomson, William (Lord Kelvin), 30
Tinguley, Jean, 266
Total energy, free energy in, 202; of

signal, 172-17 5, 294

Tiigram probabilities, 5l-52, 93
Tuller, W. G., 43
Tur ing,  A.  M.,226
T[ring machines, ll4

Uncertainty, Heisenberg's principle of,
194; information as, 24; of message
received, 79-80, 105, 164; see also
Entropy

Understanding, language and, ll7 , lZ3-
r24

Unstability of feedback systems , 216,
227

Vacuum tubes, 33; in computers, 220;
defined, 294; malfunction of, 147

Visual arts, appreciation of, 266-267;
computers and , 264-267

Viterbi, Andrew J., lgz
Vocabulary, size and complexity of, Z4Z-

245
Vocoders, defined, 294; described, 136-

142, rllustrated, 137 ; types o{ 138
Voice, see Speech
Voltage, in cables, 29; in detection of

faint signals, 214-215
Volume, in multidimensional geometry,

169-t73
Von Neumann, John, 221-ZZz

Watt, defined, 171,294
Wave guides, 195, 294
Waves, heat, 186, 187; l ight, 186, lB7 ,

196; radio, 76; of speech sounds,
I33- 135; see also Electromagnetic
waves. Sine waves
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White noise, defined, 173, 294; monot-

ony of, 251
Wiener, Norbert, 41, 44, 227; Cyber-

netics, 41,208,219: I Am a Mathe-
matician, 209, 210

Wolman, Eric, xi
Word approximations, to English text,

48 -54 ,96 ,  90 ,  I  l 0 - l  I  l ,  246 ,261_
264; first-ord er , 49 , 53, 86, 246, 261:
four th -order ,  l l0 - l l l ;  to  La t in ,
52 ;  second -o rde r ,  5 l  ,  53 ,  90 ,  262 ;
third-order, 5l-52, 90; zero-order,
49

Word-by-word encodin g, 93, 143
Words, associations to, I 18-l l9; binary-

d ig i t  encoding of ,  7 5,77 ,78,  86-88,
129: '  determined by quali t ies, I  l9-
l2 l ;  sequences of ,  53-56,  79, l lA-
I I l, 122; as used in science, 3-4, 18,
l2l; see also Langua ge, Zipf 's law

Wright, W. V., 259

Zipt 's law, 238-239; defined,294; illus-
trated, 87 , 243; other data and,247
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